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Abstract—In this paper, a first step to analyse the effects of
reducing the uncertainty of aircraft trajectories on sector demand
is presented. The source of uncertainty is wind, forecasted by
Ensemble Prediction Systems, which are composed of different
possible atmosphere realizations. A trajectory predictor determi-
nes the routes to be followed by the different flights to reduce the
uncertainty of the arrival times. The sector demand is described
in terms of entry count, that is, the number of flights entering the
sector during a selected time period, which is uncertain because
so are the the entry times to the sector. Results are presented for
a realistic application, where the dispersion of the entry count is
shown to be reduced when the dispersion of the arrival times is
also reduced.

I. INTRODUCTION

In 2005, the European Commission stated the political
vision and high level goals for the Single European Sky and
its technological pillar SESAR. Accomplishing the goals of
increasing capacity and improving safety requires a paradigm
shift in operations through state-of-the-art, innovative techno-
logy and research. A promising approach that can improve cur-
rent prediction and optimization mechanisms towards meeting
these goals is to model, analyse, and manage the uncertainty
present in Air Traffic Management (ATM).

Weather uncertainty is one of the main sources of uncer-
tainty that affect the ATM system [1]. The limited knowledge
about present and, especially, future meteorology conditions,
such as wind velocity and direction, fog, snowfall or storms,
is responsible for much of the delays and flight cancellations,
which negatively affects ATM efficiency and translates to extra
costs for airlines and air navigation service providers.

The work presented in this paper shows that the effects
of wind uncertainty on the prediction of the demand of an
Air Traffic Control (ATC) sector can be reduced when the
airspace users plan the route of each individual flight with the
objective of increased predictability. The general framework
of this work is the project TBO-Met1, funded by the SESAR
Joint Undertaking. The overall objective of this project is
threefold: 1) to advance in the understanding of the effects
of meteorological uncertainty in Trajectory-Based Operations
(TBO), 2) to develop methodologies to quantify and reduce
the effects of meteorological uncertainty in TBO, and 3) to

1https://tbomet-h2020.com/

pave the road for a future integration of the management of
meteorological uncertainty into the ATM system.

Ensemble Weather Forecasting is a prediction technique that
allows to estimate the uncertainty in a weather forecast. In this
work, the meteorological uncertainty is provided by Ensemble
Prediction Systems (EPS). Typically, an EPS is a collection of
10 to 50 forecasts, referred to as members, with forecasting
horizons of up to 2-5 days. They consist on running many
times a deterministic model from very slightly different initial
conditions [2]. Often, the model physics is also slightly pertur-
bed, and some ensembles use more than one model within the
ensemble or the same model but with different combinations of
physical parameterization schemes. This technique generates
a representative sample of the possible realizations of the
potential weather outcome. The uncertainty information is on
the spread of the solutions in the ensemble, and the hope is
that the spread of the predictions in the ensemble brackets the
true weather outcome [3].

Uncertain trajectories are obtained during the process of
trajectory planning when meteorological uncertainty is taken
into account. For each flight, the trajectory predictor computes
an ensemble of aircraft trajectories, each one corresponding to
a different member of the EPS [4]. Because they are computed
for different weather realizations, different flight durations
and fuel consumptions are obtained [5]. For each flight, the
trajectory predictor developed in TBO-Met [6] determines
an optimised route, which minimises a combination of the
average and the dispersion of the flight time. The relative
importance of each term can be adjusted through a parameter
to make the trajectory more or less predictable. The trajectories
of all flights, along with the information of the ATC sector,
are then used to analyse the sector demand.

In this work, the sector demand is described in terms of the
entry count, which is defined as the number of flights entering
the ATC sector during a selected time period [7]. This count
is obtained from the intersections of the individual aircraft
trajectories with the boundary of the sector. Since the aircraft
trajectories are uncertain, then the associated entry times are
also uncertain and, thus, the entry count is also uncertain.
The analysis is then based on the statistical characterization
of these times and this count [8].

Results are presented for a realistic application. The demand
of an ATC sector is analysed for a whole day when predicted
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Figure 1. General scheme for the analysis of sector demand.

the day before, as would do, for example, the Network Mana-
ger when balancing capacity and demand. In this application,
it is shown the effect of increasing the predictability of the
individual flights on the entry times and the entry count.

II. METHODOLOGY FOR SECTOR DEMAND ANALYSIS

The general scheme for the analysis of sector demand is
shown in Figure 1, see Ref. [8]. Initially, a scenario is defined
in terms of: 1) ATC sector (e.g., geometry and capacity),
2) flights that cross the sector (e.g., origin and destination,
departure times, flight levels, and cruise speeds), and 3)
weather forecasts (e.g., EPS to be considered, release time,
and forecast times).

The meteorological data provided by weather forecasts need
to be processed for its use by the trajectory predictor. For
example, the necessary values of wind and air temperature are
extracted, and information about convection can be derived
from different parameters.

The trajectory predictor computes, for each flight and for
each weather prediction, a different aircraft trajectory. The
trajectory predictor used in this application and developed
in TBO-Met is described in Section III. The computed tra-
jectories, along with the information of the ATC sector, are
then used to perform the analysis of the sector demand. The
different atmospheric realizations lead to different predicted
entry times and, therefore, to different entry counts. In this
work, this trajectory predictor is adjusted to obtain more
predictable trajectories.

To perform the analysis of the sector demand, the entry
times of the flights to the sector and the entry count are
statistically characterized. Mean, maximum, and minimum
values, and the spread of the times and of the count, measured
as the difference between the maximum and minimum values,
are examined.

A. Definitions and general hypotheses

In this work, it is considered that the geometry of the ATC
sector is fixed and does not change with time. Therefore, the
effects of opening/closing sectors are not analysed.

It is considered that there exist m different flights and that
the EPS is formed by n different members or atmospheric

realizations. The position of flight i (i = 1, . . . ,m) for member
j (j = 1, . . . , n) at time t, is denoted as xij(t). It is given by
the longitude λ, the latitude φ, and the pressure altitude h:

xij(t) = [λij(t), φij(t), hij(t)] (1)

The trajectories xij generated by the trajectory predictor
are provided as a list of discrete points and times. A linear
interpolation is used to obtain the position of the aircraft at
any time.

In this work, it is considered that the trajectory crosses the
ATC sector only once; trajectories that cross the same sector
multiple times are not considered (for example, flights that
return to the departure airport), because this is an uncommon
practice in commercial aviation.

B. Entry time and entry distance

If the trajectory xij crosses the ATC sector, then there
exist an entry time to the sector tij,E and the associated
entry point xij(tij,E). In this work, since the considered
trajectory predictor determines a unique route for all the
weather realizations, the entry point is the same for all the
members of the EPS. The uncertainty information is on the
spread of the entry times.

The entry times are statistically characterized. For flight i,
we define the average entry time ti,E as

ti,E =
1

n

n∑
j=1

tij,E (2)

and the dispersion of the entry time, ∆ti,E , as the difference
between the maximum and the minimum values for the
different atmospheric realizations

∆ti,E = max
j
tij,E −min

j
tij,E (3)

For flight i, the entry distance is the distance travelled
by the aircraft from its origin to the entry point, denoted
as di,E . Since the trajectories will be provided as a list of
discrete points, the distance between two consecutive points
is calculated considering a rhumb line.

C. Entry count

The entry count for a given sector is defined as the number
of flights entering the sector during a selected time period Pk.
In this paper, time periods with durations δt = 10, 30, and 60
minutes are considered.

Because the entry times are uncertain, the aircraft may enter
the sector in different time periods, thus leading to an uncertain
entry count. The larger the dispersions of the entry times and
the smaller the values of δt, the more likely the entry count to
be uncertain. For example, in case that the dispersion of the
entry time of one flight is larger than the duration of the time
period, then this flight may enter the sector in two or more
consecutive time periods.

An entry function for flight i, for ensemble member j, and
for time period Pk is defined, denoted as Eij(Pk): it takes the
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value 1 when the aircraft enters the ATC sector during this
time period and the value 0 otherwise

Eij(Pk) =

{
1 if tij,E ∈ Pk

0 if tij,E /∈ Pk

(4)

The entry count for ensemble member j and for time period
Pk, denoted as Ej(Pk), is obtained as the sum of the entries
of the different flights

Ej(Pk) =
m∑
i=1

Eij(Pk) (5)

From these n values of the entry count, mean, maximum, and
minimum values (Ē, Emax, and Emin, respectively) for time
period Pk are determined

Ē(Pk) =
1

n

n∑
j=1

Ej(Pk) (6)

Emax(Pk) = max
j
Ej(Pk) (7)

Emin(Pk) = min
j
Ej(Pk) (8)

The uncertainty information is on the spread of the entry
count. The dispersion of the entry count, ∆E(Pk), is defined
as follows

∆E(Pk) = Emax(Pk)− Emin(Pk) (9)

Notice that, since the entry of each flight to the ATC sector
for time period Pk only depends on the entry time tij,E , see
Eq. (4), then the entry count and its statistical characterization
are only affected by the uncertainty in this time. Therefore, the
uncertainty in the entry count increases when the uncertainty
in the entry time increases.

III. TRAJECTORY PREDICTOR

The trajectory predictor considered in this work solves the
problem of trajectory planning considering uncertain wind
fields provided by EPS, see Ref. [6]. For each flight and a
given EPS formed by n members, the trajectory predictor
determines n different trajectories, each one corresponding to
a different ensemble member. All trajectories follow the same
route, described as a sequence of waypoints. The difference be-
tween the trajectories is then the arrival times to the waypoints
of the route, because they are subject to different wind fields.
Since each member of the forecast is considered as equally
probable, then each trajectory is also considered as equally
probable.

The route determined by the trajectory predictor for each
flight minimises a weighted sum of the average flight time of
the n trajectories and of the flight-time dispersion, measured
as the difference between the maximum flight time tf,max

and the minimum flight time tf,min. The relative weight of
the dispersion is controlled by a parameter denoted as p. By
changing the value of this parameter, one can obtain routes that
are more efficient on average (they arrive earlier) or routes that
are more predictable (they show less dispersion).

In this work, the en-route phase is considered, flown at
constant altitude and constant airspeed. The inclusion of
variable altitude and speed profiles, and the exploration of
other objective functions that include the flight dispersion is
left for future work, see for instance Ref. [9].

This problem of trajectory planning is formulated as a deter-
ministic optimal control problem, where the n trajectories are
simultaneously considered. For each flight, the mathematical
formulation of the problem is as follows

min
1

n

n∑
j=1

tj(rf ) + p (tf,max − tf,min) (10)

subject to the constraints

d

dr



φ

λ

t1
...
tn


=



cos(χg)

RE + h
sin(χg)

(RE + h) cosφ
1

Vg,1
...
1

Vg,n


(11)



Vg,1 cos(χg)

...
Vg,n cos(χg)

Vg,1 sin(χg)

...
Vg,n sin(χg)


=



V cos(χ1) + wy,1(φ, λ)

...
V cos(χn) + wy,n(φ, λ)

V sin(χ1) + wx,1(φ, λ)

...
V sin(χn) + wx,n(φ, λ)


(12)

where r is the distance flown along the route, rf is the
distance flown when arriving to the destination, tj(r) is the
flight time at distance r for ensemble member j, χg is the
course, RE = 6371 km is the Earth radius considered as
a sphere, Vg,j are the groundspeeds derived from the winds
provided by the ensemble member j, V is the aerodynamic
airspeed, χj is the heading for ensemble member j, and wx,j

and wy,j are the zonal and meridional components of the wind
for member j. Notice that the wind does not depend on the
time in this formulation, it is obtained from the forecast closer
to the middle time of the flight. An estimation of the arrival
time needs to be provided to choose the appropriate forecast
beforehand.

The boundary conditions of the problem are

(φ(0), λ(0)) = (φ0, λ0)

(φ(rf ), λ(rf )) = (φf , λf )

tj(0) = t0, ∀j ∈ {1, ..., n}
(13)

where φ0 and λ0 are the coordinates of the departure point,
φf and λf are the coordinates of the destination point, and t0
is the departure time.
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Figure 2. Geographical location of ATC sector LECMSAU and the extended
area.

The resolution of this mathematical problem relies on an
initialization and wind approximation procedure described in
Ref. [10]. It is solved with direct methods, discretizing the
trajectory with a trapezoidal scheme and then solving the
resulting nonlinear optimization problem with NLP software
(see, for example, Ref. [11]).

IV. APPLICATION

In this application, the demand of the ATC sector LECM-
SAU is analysed for a whole day, 01 September 2016 (from
00:00 to 24:00), when predicted the day before, 31 August
at 00:00. Next, the traffic scenario is described, in terms of
ATC sector, flights, and weather forecasts. The results are
presented and analysed in Section V for two different values
of the parameter p.

A. ATC sector

The sector LECMSAU is located in the Northwest of Spain,
see Figure 2. It is an en-route sector, ranging from flight level
345 to 460. Its declared capacity (i.e., the maximum number
of flights entering the sector per hour) is 36 flights/hour. This
information has been obtained from Eurocontrol’s Network
Strategic Tool (NEST) for the Aeronautical Information Re-
gulation and Control (AIRAC) cycle 1609.

B. Flights

The information of the flights is also obtained from NEST,
and it corresponds to the last filed flight plans from the airlines
(i.e., initial trajectories, according to NEST nomenclature).
Notice that the optimal routes determined by the trajectory
predictor of this work are, in general, different from the routes
filed in the flight plans, and it may happen that an optimal
route crosses the sector whereas the corresponding planned
route does not. Therefore, to take into account this situation,
it has been decided to consider flights that planned to cross an
extended area around LECMSAU. The coordinates of the four

vertices of this area are (see Figure 2): (N 47◦, W 15◦ 30’),
(N 46◦ 30’, W 2◦ 30’), (N 40◦, W 5◦ 30’), (N 40◦, W 15◦).

A total number of 1443 flights is obtained from NEST for
the date of analysis and the extended area. However, 51 of
these flights are discarded, those flights arriving or departing
to/from LEST, LEVX, and LECO airports. The reason is that,
under the hypothesis of flying at constant pressure altitude,
these flights instantly appear or disappear inside the sector,
not crossing the sector boundaries. Thus, a total number of
1392 flights is considered in this application. This traffic is
composed of short flights (departing from Portugal, Spain, and
France), medium flights (flights from the Canary Islands, the
British Isles, the Scandinavian Peninsula, and Eastern Europe),
and long flights (from South, Central, and North America).

The trajectory predictor described in Section III requires the
following information for each flight:

• coordinates of the departure and arrival airports: obtained
from NEST;

• departure time: obtained from NEST;
• arrival time: obtained from NEST, used as a reference

time;
• pressure altitude: fixed to 200 hPa (approximately

38600 ft) for all aircraft and the whole flight;
• airspeed: the average cruise Mach provided by Eurocon-

trol’s Base of Aircraft Data (BADA) 3.13 [12] for the
aircraft model that performs the flight is considered for
the whole flight (from origin to destination), ranging from
0.63 to 0.85.

C. Weather forecast

The meteorological uncertainty is retrieved from the Eu-
ropean Centre for Medium-Range Weather Forecasts. In par-
ticular, the weather forecast ECMWF-EPS, composed of 50
perturbed members, is used.

Since the analysis is performed the day before the opera-
tion, the forecasts released at 00:00 on 31 August 2016 are
considered. According to the flight plans retrieved from NEST,
the earliest flight departs at 16:20 on 31 August and, as a
reference, the latest flight arrives to its destination at 09:54 on
02 September. Taking into account these times, the forecasts
with forecasting horizons of 12, 18, 24, 30, 36, 42, 48, 54,
and 60 hours are considered.

In agreement with the coordinates of the route waypoints,
the forecasts are retrieved for a coverage area which ranges
from 45 degrees South to 75 degrees North, and from 130 de-
grees West to 50 degrees East. The spatial grid resolution
is 0.25 degrees. According to the cruise altitude chosen for
all flights, the forecasts are retrieved for the pressure level
200 hPa.

The meteorological variables required by the trajectory
predictor described in Section 3.2 are the zonal wind and the
meridional wind (winds along the West-East and South-North
directions, respectively).

In Figures 3 and 4, the average and the dispersion of the
meridional and the zonal winds are shown for the forecast
corresponding to the time instant 12:00 on 01 September. The
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Figure 3. Average meridional (top) and zonal (bottom) winds, ECMWF-EPS
released at 00:00, 31/08/16, forecasting horizon 36 hours.

dispersion is measured as the difference between the maximum
and the minimum values at each geographic location.

The average meridional wind, see Figure 3 top, ranges
approximately between -30 m/s (South direction) and 40 m/s
(North direction). High values of the wind are found at the
East coast of North America and the North Atlantic Ocean.
The average zonal wind, see Figure 3 bottom, is larger than
the meridional wind, ranging approximately between -30 m/s
(West direction) and 70 m/s (East direction). The zonal wind is
therefore the main contributor to the existence of jet streams.
The larger values are found again at the East coast of North
America, the North Atlantic Ocean, and South America.

The dispersion of the winds, see Figure 4, is rather large,
with maximum values above 40 m/s. The geographic areas
affected by high uncertainty are approximately the same in
both cases. In particular, it can be highlighted the East coast of
North America and the North Atlantic Ocean, affecting flights
from North America to Europe.

V. RESULTS

Next, results are presented for two different values of the
relative weight of the dispersion, p = 0 and p = 20. Notice
that, for a given flight and for each value of the parameter p,
a different route is obtained which may or may not cross the
sector. Trajectories that exit the sector and briefly enter again
have been discarded for being not realistic.
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Figure 4. Dispersion of the meridional (top) and zonal (bottom) winds,
ECMWF-EPS released at 00:00, 31/08/16, forecasting horizon 36 hours.

The number of trajectories that enter the sector for p = 0
is 440 and for p = 20 is 624. In this work, only the effect
of the reduction of the time dispersion on the sector demand
is analysed. For this reason, 328 flights are considered, those
flights that cross the sector LECMSAU for both values of p.
The effect of the varying number of aircraft entering the sector,
that is, the displacement of the traffic flows from one sector
to another, is left for future work.

A. Entry times

The dispersion of the entry time, ∆ti,E , as a function of the
distance to the entry point, di,E , for each flight is presented
in Figure 5. Firstly, one can see that, as one could expect,
in general the dispersion increases as the distance increases
because the uncertainty is accumulated along the trajectories;
flights arriving from distant locations present more uncertainty.
For example, for p = 0, the maximum dispersion is as large
as 449 seconds and it is found for 7553 km.

Secondly, it can be seen that there are flights with similar
distances but different values of dispersion. For example, for
p = 0 and for di,E approximately equal to 1500 km, the
dispersion ranges between 115 and 339 seconds. As possible
causes of these different values, the following ones can be
highlighted:

• different routes (flights over regions of the airspace with
different uncertainty),
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Figure 5. Dispersion of the entry time vs distance to the entry point.

• different effects of the same wind uncertainty on different
flights (uncertainties in tail/headwinds have a higher
impact than uncertainties in crosswinds),

• different departure times (the predictions for flights de-
parting later are made with weather forecasts with larger
time horizons, thus having a larger uncertainty), or

• different speeds (flights with lower values of Mach num-
ber and with headwinds are more sensitive to uncertain-
ties in the wind).

Finally, it can be seen that the trajectories obtained for
p = 20 show a lower dispersion in the entry time. The average
value of dispersion for all the aircraft (that is, the average
value of the points in Figure 5) is 156.4 s for p = 0, and
125.8 s for p = 20, a reduction of 30.6 s. However, as can be
inferred from the objective function (10), this reduction of the
dispersion comes from an increase of the average flight time.
In this application, the average flight time increases 382.5 s.

B. Entry count

The entry count for p = 0 and three different time intervals,
δt = 60, 30, and 10 minutes, is shown in Figure 6. The average
entry count is shown as vertical bars, and the minimum and
maximum entry count as whiskers. The capacity of the sector
is depicted as a red horizontal line, which is 36 flights/hour,
and is assumed to be 18 flights/30 minutes, and 6 flights/10 mi-
nutes.

For the 60 minute interval, the largest value of the mean
entry count is 40.5 flights, found at 07:00-08:00, which
exceeds the sector capacity. The entry counts determined for
smaller time intervals allow a more precise identification of
the traffic peaks. In particular, for the 30 minute interval, the
traffic peak takes the value 26.6 and is found in the period
07:00-07:30, and for the 10 minute interval it is 14.2 flights
in 07:20-07:30, much higher than the assumed capacities.

The uncertainty on the entry count is on the spread of
the number of flights, that is, the height of the whiskers in
Figure 6, also represented in Figure 7 for convenience. For
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Figure 6. Entry count for p = 0 and δt = 60 minutes (top), 30 minutes
(middle), and 10 minutes (bottom).

example, for δt = 30 minutes, the difference between the
maximum and the minimum values of the entry count is as
large as 3 flights for a total of 0.5 hours, 2 flights for 5.5 hours
(in disjoint periods), 1 flight for 9 hours, and 0 flights for the
remaining 9 hours.
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Figure 7. Dispersion of the entry count for p = 0 and δt = 60 minutes
(top), 30 minutes (middle), and 10 minutes (bottom).
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Figure 8. Dispersion of the entry count for p = 20 and δt = 60 minutes
(top), 30 minutes (middle), and 10 minutes (bottom).
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When the duration of the time periods is shortened, it
can be observed that the maximum values of the dispersion
increase, as already noted in Section II-C, but the average
values of the entry counts are proportionally reduced; thus,
the uncertainty becomes relatively more important. For ex-
ample, for the 30 minute interval, the largest dispersion on
the entry count is 3 flights and the average entry count is
6.83 flights/period (obtained as the number of flights entering
the sector divided by the number of time periods), 44% in
relative terms; whereas for the 10 minute interval the largest
dispersion on the entry count is 4 flights and the average entry
count is 2.28 flights/period, 175%.

For p = 20, the average entry counts are slightly different to
those found for p = 0, shown in Figure 6, due to differences
in the average entry times; they are not shown for brevity.
The main difference between the two set of results is found
in the dispersion of the entry count, as can be seen in
Figure 8 compared to Figure 7. The maximum dispersion can
be occasionally larger, for example, for 10 minutes and p = 20
the maximum dispersion is 5 flights, and for p = 0 is 4 flights,
but on average, the dispersion is significantly reduced: for
60 minutes the average dispersion per period (and for the
whole day) is reduced from 0.83 to 0.50 flights, for 30 minutes
from 0.99 to 0.69, and for 10 minutes from 0.90 to 0.50.

VI. CONCLUSIONS

A first step to show the effects of reducing the uncertainty
of aircraft trajectories on the sector demand has been presented
in this paper. The source of uncertainty is wind, forecasted by
Ensemble Prediction Systems. The uncertainty is reduced by
a trajectory predictor to be employed by airspace users, which
determines the appropriate route to minimise a weighted sum
of the average flight time and of the flight-time dispersion.
The sector demand is described by the entry count, which is
uncertain because the entry times to the sector are uncertain.

In the application presented, it has been found that, because
uncertainty is accumulated along the flight, the uncertainty
in the entry time increases as the distance travelled by the
aircraft to the entry point increases. Thus, sectors with pre-
dominance of incoming long-haul flights are expected to be
more affected by weather uncertainty. Also, it has been found
that the uncertainty in the entry count may be rather large,
in particular when small time periods are considered. It is
worth noting that, in this application, only wind uncertainties
are considered. Larger values of uncertainty are expected in
scenarios that consider uncertainties on air temperature and,
primarily, convective phenomena.

When the dispersion of the individual trajectories is reduced,
the dispersions of the entry times and of the entry counts
are also reduced. However, this reduction of the dispersion
comes from an increase of the average flight time and, thus,
of fuel consumption and operating costs. Both the airlines and
the Network Manager will benefit of better predictability. The
airlines will know better when the aircraft will arrive to the
destination airports, leading to a better fleet scheduling. The
Network Manager will know more precisely the demand of

the sector, which may allow to improve the Demand-Capacity
Balancing process, better identifying the Air Traffic Flow and
Capacity Management measures to be applied.

It has been found that when the predictability of individual
flights is increased, the trajectories are deviated, modifying
the number of aircraft crossing the sector. The displacement
of traffic flows from one sector to another is left for future
work.

This analysis can be extended to consider other demand
indicator as it is the occupancy count, that is, the number of
flights inside the sector during a selected time period. For this
count, it is necessary to consider also the exit time from the
sector, which is also affected by the weather uncertainties that
exist inside the ATC sector.

In the immediate future, under the scope of the TBO-
Met project, this methodology will be applied to quantify the
effects of weather uncertainty on convective phenomena. In
this case, the uncertainty will be obtained from probabilistic
nowcasts.
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