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Abstract

The current lack of efficiency in the use of airspace, enforced by the economic crisis an the increasing competitiveness among air

transport companies are drivers for a renewed interest for the application of optimization techniques to find answers to overcame

current inefficiencies.

The main objective of the present paper is to assess and compare different optimal aircraft trajectories techniques applied to

the minimum fuel cruise problem at constant altitude and course with fixed arrival time, International Standard Atmosphere and

without wind. Four trajectory optimization methods have been used: Hermite-Simpson , 5th degree Gauss-Lobatto and Radau

pseudospectral collocation methods and the singular arc solution.

Hermite-Simpson and 5th degree methods have been programmed in Ampl modeling language with an IPOPT solver and

Radau pseudospectral method using gpops matlab tool with SNOPT solver.

5th degree Gauss-Lobatto collocation method gives the less fuel consumption solution followed by Radau pseudospectral,

Hermite-Simpson and singular arc. In considering the program execution time, Hermite-Simpson collocation method is the fastest

method followed by 5th degree and Radau pseudospectral. Also, taking into account the time for developing the program code the

Radau pseudospectral is the most user friendly. Moreover, it has been observed that increasing the sample points in the Hermite-

Simpson and 5th degree, the solution converge to the minimum fuel consumption solution. On the other hand, gpops does not show

much sensitivity to the number of sample points.
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1. Introduction

In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new

set of operating procedures collectively referred to as Trajectory-Based Operations (TBO) [1]. The underlying idea

behind TBO is the concept of business trajectory. The business trajectory is the trajectory that will meet best air-

line business interests. This business interests may be, for instance, minimum duration, minimum consumption, or

minimum operational cost. The TBO concept of operations and the notion of business trajectory will result in more
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efficient 4D trajectories, that will be necessarily flown under the presence of constraints due to, for instance, airport

operations or Air Traffic Control (ATC) intervention. Any modification in that trajectory will result in a change in

the cost effectiveness of the operation. Thus, the future ATM system should modify the business trajectory as little as

possible. Furthermore, the necessary tactical intervention will be limited to exceptions, so the development of tech-

niques for strategic planning of business 4D trajectories will be key, resulting in significant fuel savings for airlines.

Effective flight planning cannot only reduce fuel costs, but also time-based costs and lost revenue from payload that

can not be carried, simply by choosing efficient routes and altitudes, speed, and the optimal amount of departure fuel.

The flight planning problem can be regarded as a trajectory optimization problem. The trajectory optimization

problem can be studied as an optimal control problem of a dynamic system in which the goal is to find the trajectory

and the corresponding control inputs that steer the state of the system between two configurations satisfying a set of

constraints on the state and/or control variables while minimizing an objective functional.

Typically, optimal control problems are highly non-linear and it is very difficult to find an analytical solution

even for the simplest cases. The common practice is to use numerical methods to obtain solutions. There are three

fundamental approaches to numerically solving continuos time optimal control problems: Dynamic Programming

(DP) methods, whose optimality criteria in continuous time is based on the Hamilton-Jacobi-Bellman partial differ-

ential equation [2]; indirect methods, that rely on the necessary conditions of optimality that can be derived from the

Pontryagin’s maximum principle [3]; direct methods, that are based on a finite dimensional parameterization of the

infinite-dimensional problem [4].

In the scope of commercial aircraft trajectory optimization using optimal control, different methods have been

used. For instance, in [5] the authors analyze the optimal performance of an aircraft in cruise conditions solving

the problem as a singular arc. Also, the singular arc trajectory was analyzed for climb performances [6]. Dynamic

Programming has been also used very recently to solve the vertical profile [7]. More complex problems have been

solved using different direct methods.

For instance, Hermite-Legendre-Gauss-Lobatto collocation methods have been used to solve commercial aircraft

trajectory planning problems [8, 9, 10, 11]. Also, recent advances have been made in pseudospectral collocation

methods [12, 13]. In particular, the software package GPOPS [14] implements Gauss and Radau pseudospectral

methods. Its interface with matlab makes it a very powerful and user friendly tool.

However, there is still a lack of knowledge in terms of analyzing the performances of the different methods within

the particularities of commercial aircraft trajectory optimization.

Therefore, the main contribution of this paper is to present a comparison of different optimal control methods

applied the problem of minimum fuel cruise at constant altitude and heading with fixed arrival time. The different

methods are discussed and solutions to the problem are presented using them. Namely, the problem is solved as a

singular arc problem, using Hermite-Legendre-Gauss-Lobatto direct collocation methods (Hermite-Simpson and 5th

degree), and using the software GPOPS.

Te paper is structure as follows. First, in Section 2, we state the optimal control problem and present the optimality

conditions. In Section 3, the most common numerical methods to solve such problem are described. The problem of

minimum fuel cruise at constant altitude and heading with fixed arrival time is then presented in Section 4. Subse-

quently, results are reported and discussed in Section 5. Finally, some conclusions and future directions of research

are drawn in Section 6.

2. Optimal Control Problem

Control theory is a discipline that studies the behavior of dynamical systems with control inputs. In general, the

aim is to control the state of the dynamical system in some prescribed manner. The goal of optimal control theory is

to determine the control input that will cause a system to achieve the control objectives, satisfying the constraints, and

at the same time optimize some performance criterion.

The trajectory planning problem is in general solved following an open loop terminal control problem. This

strategy allows all the constraints acting on the dynamical system, including the dynamic constraints, to be taken

into account in such a way that the resulting trajectory is admissible. However this problem has an infinite number

of solutions. To eliminate this redundancy optimal control techniques can be used to select only one of them, the

trajectory that optimize a given criterion. Once an admissible trajectory or the optimal one has been found, a closed

loop tracking control strategy is in general used to follow it.



233 Javier García-Heras et al.  /  Procedia Engineering   80  ( 2014 )  231 – 244 

The optimal control problem can be stated as follows:

Problem 1 (Optimal Control Problem).

min J(t, x(t), u(t), l) = E(tF , x(tF)) +

∫ tF

tI

L(x(t), u(t), l)dt;

subject to:

ẋ(t) = f (x(t), u(t), l), dynamic equations;

0 = g(x(t), u(t), l), algebraic equations;

x(tI) = xI , initial boundary conditions;

ψ(x(tF)) = 0, terminal boundary conditions;

φl ≤ φ[x(t), u(t), p] ≤ φu, path constraints.

(OCP)

Variable t ∈ [tI , tF ] ⊂ R represents time and l ∈ R
nl is a vector of parameters. Notice that the initial time tI is

fixed and the final time tF might be fixed or left undetermined. x(t) : [tI , tF ] �→ R
nx represents the state variables.

u(t) : [tI , tF] �→ R
nu represents the control functions, also referred to as control inputs, assumed to be measurable. The

objective function J : [tI , tF ] × Rnx × Rnu × Rnl → R is given in Bolza form. It is expressed as the sum of the Mayer term

E(tF , x(tF )) and the Lagrange term
∫ tF

tI
L(x(t), u(t), l)dt. Functions E : [tI , tF ] × R

nx → R and L : Rnx × R
nu × R

nl → R are

assumed to be twice differentiable. The system is a DAE system in which the right hand side function of the differential

set of equations f : Rnx × R
nu × R

nl → R
nx is assumed to be piecewise Lipschitz continuous, and the derivative of the

algebraic right hand side function g : R
nx × R

nu × R
nl → R

nz with respect to z is assumed to be regular. xI ∈ R
nx

represents the vector of initial conditions given at the initial time tI and the function ψ : R
nx → R

nq provides the

terminal conditions at the final time and it is assumed to be twice differentiable. The system must satisfy algebraic

path constraints given by the function φ : Rnx × Rnu × Rnl → R
nφ with lower bound φl ∈ R

nφ and upper bound φu ∈ R
nφ .

Function φ is assumed to be twice differentiable.

2.1. Pontryagin’s necessary conditions

2.1.1. Unconstrained problems

For the sake of clarity, let us consider a simpler problem with no path constraints, no algebraic constraints, nor

dependence on the vector of parameters p, i.e., let us consider the following unconstrained optimal control problem:

min J(t, x(t), u(t)) = Φ(tF , x(tF)) +

∫ tF

tI

L(t, x(t), u(t))dt. (1a)

Subject to:

ẋ(t) = f (t, x(t), u(t)), dynamic constraints; (1b)

ψ(x(tF)) = 0, final boundary condition; (1c)

where the initial conditions x(tI) = xI are given at the fixed initial time tI , and the final time tF is undetermined. The

designators J,Φ, L, f , ψ, t, x, u are as in problem (OCP) besides changes due to not including the vector of parameters

p.

The problem (1) is to find the admissible control functions u∗(t) that minimize (or maximize) the performance

index J(t, x(t), u(t)) in equation (1a) and fulfill the set of differential equations (1b), final boundary conditions (1c) and

the initial conditions x(tI) = xI .

Let us adjoin to J(t, x(t), u(t)) the system differential equation (1b) with functions λ(t) : [tI , tF] → R
nx , and the

final boundary condition (1c) with multipliers μ ∈ Rnq . λ(t) are assumed to be continuously differentiable functions.

Then, we can define the Lagrangian of the problem as:

Definition 2.1 (Lagrangian). The Lagrangian of the unconstrained optimal control problem (1) is a continuously

differentiable function L : [tI , tF] × Rnx × Rnu × Rnq × Rnx → R:

L(t, x(t), u(t), μ, λ(t)) =
(
Φ(tF , x(tF)) + μTψ(x(tF))

)
+

∫ tF

tI

[
L(t, x(t), u(t)) + λT (t)(ẋ − f (t, x(t), u(t)))

]
dt, (2)
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where the variables λi(t), i = 1, . . . , nx are the adjoint variables or costates for the dynamic constraints ẋ −

f (t, x(t), u(t)) = 0, and μ ∈ Rq are Lagrange multipliers associated to the number of final constraints ψ(x(tF )) ∈ Rq.

Let us define the HamiltonianH :

Definition 2.2 (Hamiltonian). The Hamiltonian of the unconstrained optimal control problem (1) is a scalar function

H : [tI , tF] × Rnx × Rnu × Rnx → R defined by

H (t, x(t), u(t), λ(t)) = L(t, x(t), u(t)) + λT (t) f (t, x(t), u(t)). (3)

Let us also define the auxiliary function ϕ[tI , tF] × Rnx → R:

ϕ(t, x) = Φ(t, x(t)) + μTψ(x(t)). (4)

Integrating by parts the last term on the right side in equation (2), it yields:

L(t, x(t), u(t), μ, λ(t)) = [ϕ(t, x(t))]t=tF
− λT (tF)x(tF ) + λT (tI)x(tI) +

∫ tF

tI

[
H (t, x(t), u(t), λ(t))+ λ̇T (t)x(t)

]
dt. (5)

Necessary conditions for optimality of solution trajectories trajectories (x∗(t), u∗(t)), t ∈ I = [tI , tF] can be derived

based on variations of the Lagrangian L. Consider now the variation in L due to variations in the control vector u(t)

for fixed times tI and tF :

δL =

[
(
∂ϕ

∂x
− λT )δx

]
t=tF

+ [λTδx]t=tI
+

∫ tF

tI

[
(
∂H

∂x
+ λ̇T )δx +

∂H

∂u
δu

]
dt. (6)

Since it would be tedious to determine the variations δx(t) produced by a given δu(t), the multiplier functions λ(t) are

chosen so that coefficients δx vanish in equation (6):

dλ

dt
= −
∂H

∂x
= −
∂L

∂x
− λT ∂ f

∂x
, (7)

with boundary conditions

λ(tF) =

[
∂ϕ

∂x

]
t=tF

. (8)

Then, equation (6) become

δL = [λTδx]t=tI
+

∫ tF

tI

[
∂H

∂u
δu

]
dt. (9)

For an extremum, δL must be zero for any arbitrary δu. This can only happen if:

[
∂H

∂u

]
= 0, t ∈ [tI , tF]. (10)

Equations (7), (8), and (10) are known as the Euler-Lagrange equations in the calculus of variations.

Definition 2.3 (Pontryagin’s maximum principle). A general expression of the necessary conditions of optimality

for the unconstrained optimal control problem (1) is due to Pontryagin’s maximum principle [3]:

H (t, x∗(t), u∗(t), λ∗(t)) = max
u(t)∈U

H (t, x(t), u(t), λ(t)) ∀t ∈ I = [tI , tF]. (11)

Early developments of the maximum principle were carried out by Pontryagin et al [3] and Hestens [15]. A good

survey on maximum principles with several cases and extended to handle constraints in both control and state variables

is due to Hartl, Sethi, and Vickson [16].

The necessary optimality conditions are derived from the maximum principle and can be also expressed based on

the Euler-Lagrange equations:
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Definition 2.4 (Necessary optimality conditions). The necessary optimality conditions for the unconstrained optimal

control problem (1) which result from setting the first variation of the Lagrangian to zero, δL = 0, are:

dλ

dt
= −
∂H

∂x
, adjoint equations; (12a)

∂H ,

∂u
= 0, control equations; (12b)

λ(tF ) =

[
∂ϕ

∂x

]
t=tF

, transversality conditions; (12c)

λ(tI) = 0, transversality conditions. (12d)

They are referred to as the Euler-Lagrange equations.

The control equations (12b) are a simplified statement of the Pontryagin maximum principle. Notice that, in

addition to the fulfillment of the Euler-Lagrange equations (12), necessary optimality conditions entails also the

fulfillment of the set of differential equations (1b), final boundary conditions (1c) and initial conditions x(tI) = xI .

2.1.2. Constrained problems

Let us now briefly extend the necessary condition derived for the unconstrained problem to the case in which

inequality and equality path constraints are considered [4].

Generalizing the unconstrained optimal control problem (1), let us assume that we also impose algebraic path

constraints of the form

g[t, x(t), u(t)] = 0, (13)

where the designator g is as in Problem (OCP) besides changes due to not including the vector of parameters p.

The treatment of path constraint (13) depends on the matrix of partial derivatives, gu =
∂g

∂u
. Two possibilities exist:

If the matrix gu is full rank, then the set of differential equations 1b) and the set of algebraic equations (13) constitute

a DAE dynamical system of index one, and the of equations (13) is termed as control variable equality constraint. For

this case the Hamiltonian (3) is replaced by

H (t, x(t), u(t), λ(t), ν(t)) = L(t, x(t), u(t)) + λT (t) f (t, x(t), u(t)) + νT (t)g[t, x(t), u(t)], (14)

which will result in modification to both the adjoint equations (12a) and the control equations (12b). In this Hamilto-

nian (14) ν ∈ Rnz are adjoint variables associated to the equality constraints g ∈ Rnz .

The second possibility is that the matrix gu is rank deficient. In this case we can differentiate the set of path

constraints (13) with respect to t and reduce the index of the DAE system. The result is a new path constraint function,
dg

dt
= ġ = 0. For this new path function, the matrix ġu may be full rank or rank deficient. If it is full rank, we operate

as in the previous case, substituting matrix gu for matrix ġu. If it is rank deficient, the process must be repeated.

These inconveniences can also appear even in the absence of path constraints, when the so-called singular arcs

appear. One expects the optimality condition ∂H
T

∂u
= HT

u = 0 to define the control variable provided by the nonsingular

matrix Huu. However, if Huu is singular, the control u is not uniquely defined by the optimality condition. For this

situation, referred to as singular arc, it holds an analysis of the problem involving techniques similar to those used for

the case of equality constraints.

Let us now generalize the unconstrained optimal control problem (1) considering inequality path constraints of

the form φ[t, x(t), u(t)] ≥ 0, where the designator φ is as in Problem (OCP) besides changes due to not including the

vector of parameters p.

Unlike an equality constraint, which must be satisfied throughout the entire time domain I = [tI , tF], inequality

constraints may either be active (φ = 0) or inactive (φ > 0) at each instant in time. In essence, the time domain is

partitioned into constrained and unconstrained subarcs. During the unconstrained arcs, the necessary conditions are

given by the set of differential equations (1b), the set of adjoint equations (12a) and the set of control equations (12b),

whereas the conditions with modified Hamiltonian (14) are applicable in the constrained arcs. Thus, the imposition

of inequality constraints presents three major complications. First, te number of constrained subarcs is not known a
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priori. Second, the location of the junction points when the transition from constrained to unconstrained (and vice-

versa) occurs is unknown. Finally, at the junction points, it is possible that both the control variables u and the adjoint

variables λ are discontinuous. Additional jump conditions, which are essentially boundary conditions imposed at the

junction points, must be satisfied.

For a more complete discussion on how a constraints are tackled in optimal control problems, the reader is referred

to [17, chapter 3] and [4].

3. Numerical methods

Typically, optimal control problems are highly nonlinear and it is very difficult to find an analytical solution even

for the simplest cases. The common practice is to use numerical methods to obtain solutions.

There are three main approaches to numerically solve continuos time optimal control problems such as problem

(OCP):

1. Dynamic Programming (DP) methods: The optimality criteria in continuos time is based on the Hamilton-

Jacobi-Belman partial differential equation [2].

2. Indirect methods: The fundamental characteristic is that they explicitly rely on the necessary conditions of

optimality that can be derived from the Pontryagin’s Maximum Principle [18]. Bryson and Ho [17] provide

a thorough and comprehensive overview of necessary conditions for different types of unconstrained and con-

strained optimal control problems.

3. Direct methods: They can be applied without deriving the necessary condition of optimality. Direct methods

are based on a finite dimensional parameterization of the infinite dimensional problem. The finite dimensional

problem is typically solved using an optimization method, such as nlp techniques. nlp problems can be solved

to local optimality relying on the so called Karush-Kuhn-Tucker (KKT) conditions, which give first-order con-

ditions of optimality. These conditions were first derived by Karush in 1939 [19], and some years later, in 1951,

independently by Kuhn and Tucker [20].

3.1. Dynamic programming methods

The basic idea in using DP is to subdivide the problem to be solved in a number of stages. Each stage is associated

with one subproblem and the subproblems are linked together by a recurrence relation. The solution of the whole

problem is thus obtained by solving the subproblems using recursive computations. For a more detailed insight in DP

and optimal control, the reader is referred to [21].

DP has been extensively applied with success to discrete optimal control problems. Unfortunately, its application

is severely restricted in the case of continuous states systems because of the “curse of dimensionality,” a term coined

by Bellman to describe the problem caused by the exponential increase in the size of the state space.

Therefore, for solving nonlinear, continuous optimal control problems with a large number of variables, e.g., the

aircraft trajectory planning problem, DP is clearly not adequate. Other approaches, such as indirect or direct methods,

must be used.

3.2. Indirect methods

Indirect methods rely on Pontryagin’s Maximum Principle [18]. Typically, the optimal control problem is turned

into a two point boundary value problem containing the same mathematical information as the original one by means

of necessary conditions of optimality. Then, the boundary value problem is discretized by some numerical technique

to get a solution. Thus, Indirect methods follow a “first optimize, then discretize” scheme. Numerical techniques

for solving this two point boundary value problem can be classified as gradient methods [22], indirect shooting and

indirect multiple shooting [23, 24], and indirect collocation [25].

The practical drawbacks of indirect methods are [4, Chap. 4.3], [26]:

• Proper formulations of the necessary conditions of optimality in a numerically suitable way must be derived.

Since this formulation is rather complicated, significant knowledge and experience in optimal control is required

by the user of an indirect method.

• In order to handle active constraints properly, their switching structure must be guessed.
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• Suitable initial guesses of the state variables and, with special relevance, to the adjoint variables must be pro-

vided to start the iterative method. State variables have physical meaning, but adjoint variables do not, so that

giving a proper initial guess might be hard and a non-proper one usually leads to non-optimal solutions. Even

with a reasonable guess for the adjoint variables, the numerical solution of the adjoint equations can be ill

conditioned.

• Changes in the problem formulation, e.g., by a modification of the model equations, imply formulating again

the optimality conditions of the problem.

• Finally, model functions with low differentiability properties are difficult to tackle with indirect approaches.

Because of these practical difficulties, indirect methods are not suitable to solve highly constrained trajectory

planning problems. In fact, rather than indirect approaches, direct methods have been extensively used for solving

aerospace trajectory optimization problems in spite of the fact that they present less accuracy than indirect methods

[27]. Two comprehensive surveys analyzing direct and indirect methods for trajectory optimization are [28, 29].

3.3. Direct methods

The so called direct methods do not use the first-order necessary conditions of the continuous optimal control

problem. They convert the infinite dimensional problem into a problem with a finite set of variables, and then solve the

finite dimensional problem using optimization methods. Direct methods thus follow a “first discretize, then optimize”

approach. A typical strategy is to convert the infinite problem into a nlp problem which is solved using mathematical

programming techniques [30, 31].

The most important direct numerical methods are direct shooting [32], direct multiple shooting [33] and direct

collocation [34]. A good reference on the practical importance of direct methods is [4].

The direct single shooting method has been broadly used because it allows optimal control problems to be easily

converted into an nlp problem with a small number of variables even for very large problems. In single shooting only

initial guesses for the control nlp variables are required. In contrast, it is very sensitive to small perturbations on the

initial condition.

The direct multiple shooting method reduces some of the problems that single shooting has. However, the mul-

tiple shooting approach increases the size of the problem because additional variables and constraints have to be

included. When the problem includes inequality constraints, there is the additional disadvantage that the sequence of

unconstrained and constrained arcs has to be specified in advance.

The direct collocation method do not suffer from most of the drawbacks mentioned above, and therefore they are

the most suitable for aerospace trajectory optimization problems [4, 28, 29].

A taxonomy of optimal control methods for trajectory optimization is given in Figure 1. Notice that this taxonomy

is not necessarily exhaustive.

3.3.1. Direct collocation methods

Collocation methods enforce the dynamic equations through quadrature rules or interpolation [35, 34]. A suitable

interpolating function, or interpolant, is chosen such that it passes through the state values and maintains the state

derivatives at the nodes spanning one interval, or subinterval, of time. The interpolant is then evaluated at points

between nodes, called collocation points. At each collocation point, a constraint equating the interpolant derivative to

the state derivative function is introduced to ensure that the equations of motion are approximately satisfied across the

entire interval of time [36].

Collocation methods are characterized by the interpolating function and by the nodes and collocation points they

use. One of the simplest methods of collocation is the Hermite-Simpson collocation method [35, 37]. In this method

a third-order Hermite interpolating polynomial is used locally within the entire sequence of time subintervals, each

solved at the endpoints of a subinterval and collocated at the midpoint. When arranged appropriately, the expression

for the collocation constraint corresponds to the Simpson integration rule. A generalization of the method is obtained

using the n-th order Hermite interpolating polynomial, and choosing the nodes and collocation points from a set

of Legendre-Gauss-Lobatto points defined within the time subintervals. These choices give rise to the Hermite-

Legendre-Gauss-Lobatto (HLGL) collocation method [36]. Other collocation methods are based, for instance, on

Gauss or Radau collocation schemes [38, 39].
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Trajectory optimization

Analytical optimal control Numerical optimal control

Indirect methods Direct methods Dynamic programming

Shooting methods Collocation methods

Pseudoespectral

HLGL collocation

Radau

collocation
collocation

Gauss

collocation

LGL CGL LG LGR

Figure 1. Taxonomy of trajectory optimization methods using optimal control.

There exist also discretizations for collocation based on pseudospectral methods, which generally use global

orthogonal Lagrange polynomial as the interpolants while the nodes are selected as the roots of the derivative of

the named polynomial, such as Legendre-Gauss-Lobatto (LGL) (Legendre pseudospectral collocation methods),

Chebyshev-Gauss-Lobatto (CGL) (Chebyshev pseudospectral collocation methods), Legendre-Gauss (LG) (Gauss

pseudospectral collocation methods), or Legendre-Gauss-Radau (LGR) (Radau pseudospectral collocation methods).

Since these methods use global interpolants defined over the entire time interval, the Gauss-Lobatto nodes are clus-

tered near the endpoints.

The reader is referred to [12, 13] and references therein for recent and comprehensive reviews of pseudospectal

methods for optimal control.

4. Case study

Commercial aircraft during the cruise phase follow air routes that are composed of segments. Typically, due to

ATM requirements aircraft should accomplish with a Required Time of Arrival (RTA) over a prescribed waypoint.

The problem under analysis in this work is that of flying from one waypoint to another waypoint at a given flight

level. A flat earth model is assumed, and therefore the segment can be considered a straight line. We want to find the

optimal trajectory and the optimal control inputs given a RTA at the final waypoint.
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4.1. Aircraft dynamics

4.1.1. Equations of motion

In order to plan optimal aircraft trajectories, it is common to consider a 3 degree of freedom dynamic model that

describes the point variable-mass motion of the aircraft over a spherical flat-earth model. We consider a symmetric

flight, that is, we assume there is no sideslip and all forces lie in the plane of symmetry of aircraft. Wind is not

considered. The equations of motion of the aircraft are:

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
V

xe

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (t)−D(V(t),CL (t)))

m(t)

V(t)

−T (t) · η(V(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (15)

m
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Figure 2. Aircraft state and forces

The states are: V , xe, and m referring to the true airspeed, the longitudinal position, and the mass of the aircraft,

respectively. η is the speed dependent fuel efficiency coefficient. Lift L = CLS q̂, which is equal to weight, and drag

D = CDS q̂ are the components of the aerodynamic force, S is the reference wing surface area and q̂ = 1
2
ρV2 is the

dynamic pressure. A parabolic drag polar CD = CD0 + KC2
L
, and an International Standard Atmosphere (ISA) model

are assumed. CL is a known function of the angle of attack α and the Mach number. The engine thrust T is the input,

that is, u(t) = (T (t)). For further details on aircraft dynamics, please refer to [40].

4.1.2. Flight envelope constraints

The flight envelope constraints are derived from the geometry of the aircraft, structural limitations, engine power,

and aerodynamic characteristics. We use the BADA performance limitations model and parameters [41]. For this

particular problem, we have:

M(t) ≤ MM0, mmin ≤ m(t) ≤ mmax,

V̇(t) ≤ āl, CvVs(t) ≤ V(t) ≤ VMo,

Tmin(t) ≤ T (t) ≤ Tmax(t), 0 ≤ CL(t) ≤ CLmax
.

In the above, M(t) is the Mach number and MM0
is the maximum operating Mach number; Cv is the minimum

speed coefficient, Vs(t) is the stall speed and VM0
is the maximum operating calibrated airspeed; āl is the maximum

longitudinal acceleration for civilian aircraft. Tmin and Tmax correspond, respectively, to the minimum and maximum

available thrust. Note that several flight envelop constraints are nonconvex.

4.2. Aircraft data, boundary conditions, and objective function

For the analysis herein, we have selected an Airbus 320 BADA 3.9 model [41]. The aerodynamic parameters are

those for cruise flap configuration.

The boundary conditions are shown in table 1. The objective functional is to minimize the total amount of fuel

consumption.
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Table 1. Boundary conditions.

States and control variables Initial conditions Final conditions

Time t[s] 0 4751
Longitude x(t)[m] 0 1000000
Velocity V(t)[kts] 420 Free

Mass m(t)[kg] 51200 Free
Thrust T (t)[N] Free Free

5. Numerical results

The previously described trajectory optimization problem is solved using 4 different methodologies, namely:

• Hermite-Simpson collocation method,

• 5th degree Gauss-Lobatto collocation method,

• Radau Psuedospectral collocation method using gpops, and

• Singular Arc solution.

The Hermite-Simpson collocation method has been implemented using a liner control interpolation scheme. The

5th degree Gauss-Lobatto collocation method has been implemented using a free control scheme. Both methods have

been hand-tailored and implemented in AMPL modeling language. IPOPT was used as NLP solver. More information

on these Gauss-Lobatto collocation methods can be found in [11].

GPOPS implements a Radau Psuedospectral collocation method [42]. It has been configure using SNOPT solver

and the following setup information:

• setup.mesh.tolerance: 10−6,

• setup.mesh.iteration: 10,

• setup.autoscale: ’on’,

• setup.derivatives: ’finite-difference’,

• setup.checkDerivatives: 0,

• setup.maxIterations: 3000,

• setup.tolerances: [10−6, 2 · 10−6].

The singular arc analytic solution is that by Franco et al. in [5]. The solution is obtained using the ODE 45

function in Matlab.

It is interesting to point out that it has been shown that the KKT NLP necessary conditions approach the optimal

control necessary conditions of optimality as the number of variables grows. Indeed, at the solution of the NLP prob-

lem, the Lagrange multipliers can be interpreted as discrete approximations to the optimal control adjoint variables

[4]. Therefore, we first solve the problem using the above mentioned direct methods for an increasing number of

variables. The results are shown in Table 2, Table 3, and Table 4. Figure 3 depicts the different solutions for the true

airspeed and the thrust.

For the Gauss-Lobatto methods, i.e., Hermite-Simpson and 5th degree, it can be observed that the objective func-

tion is very sensitive to the number of samples. This is specially noticeable for a low number of samples. The

computational time is however very low. Notice that by increasing the number of samples, the solution converges to

a value of minimum fuel consumption (objective function) and so do velocity and thrust. Moreover, the instabilities

due to the boundary conditions are soften.

On the contrary, the gpops solution does not show much sensitivity to the number of samples. This is due to

the fact that pseudospectral methods employ a non-homogeneous mesh of samples, locating more sample points in

those regions with high dynamics, e.g., near the boundaries. Therefore, a fairly good solution can be obtained with

much less number of variables. Nonetheless, the computation is intense more than ten times higher due to the matlab

interface, which slows the process substantially, as it is shown in tables from 2 to 4.
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(b) 5th degree
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(c) Hermite-Simpson
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(d) Hermite-Simpson
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(f) Gpops

Figure 3. State variable V(t) and control input T (t) for different number of sample points

Singular arc solution provides 2507.7 kg of fuel consumption. This solution, even though is very smooth and

thus nice from an operational perspective, results less efficient than any of the ones provided by the different direct

methods. This is because the singular arc solution, which is indeed derived from Pontryagin’s maximum principle,
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does not consider inequality constraints. Indeed, direct methods suggest that the optimal performance is to stall the

aircraft when reaching the final waypoint at the RTA. This is obviously unrealistic, but for instance, at top of descent

an aircraft might want to decelerate to intercept the waypoint at the optimal descent speed.

Table 2. Numerical results Hermite-Simpson.

n 100 200 400 800 1600 3200

Fuel Consumption [kg] 2478.31 2474.34 2472.53 2471.67 2471.25 2471.04
CPU time in IPOPT [s] 0.044 0.098 0.195 0.402 0.888 2.246

CPU time in IPOPT NLP [s] 0.092 0.273 0.749 1.656 3.755 8.206
Total Time [s] 0.160 0.414 1.02501 2.2197 4.94 11.10

Iterations 17 20 20 21 23 25
Total number of variables 495 995 1995 3995 7995 15995

Total number of eq. constraints 396 796 1596 3196 6396 12796
Total number of ineq. constraints 297 597 1197 2397 4797 9597

Table 3. Numerical results 5th degree.

n 25 49 100 200 400 800

Fuel Consumption [kg] 2481.03 2463.75 2455.94 2452.53 2450.91 2450.13
CPU time in IPOPT [s] 0.083 0.188 0.438 167.35 2.076 4.012

CPU time in IPOPT NLP [s] 0.153 0.360 1.048 4.72 6.217 12.305
Total Time [s] 0.26 0.5859 1.56 172.41 8.58 16.90

Iterations 29 29 34 58 38 37
Total number of variables 433 865 1783 3583 7183 14383

Total number of eq. constraints 336 672 1386 2786 5586 11186
Total number of ineq. constraints 191 383 791 1591 3191 6396

Table 4. Numerical results gpops.

nodesPerInterval.min-nodesPerInterval.max 20 − 30 30 − 40 60 − 70 90 − 100 120 − 130 150 − 160 180 − 190

Fuel Consumption [kg] 2466.87 2466.86 2466.87 2466.87 2466.87 2466.87 2466.87
Total Time [s] 44.7 58.5 132.2 302.3 769.2 1249.8 2466.9

Iterations 369 1136 825 1026 1490 2297 2802
Number Mesh Refinement 1 1 1 1 1 1 1

Sample points 121 181 361 541 721 901 1081
Total number of variables 485 725 1445 2165 2885 3605 4325

Total number of linear constraints 2 2 2 2 2 2 2
Total number of NL constraints 360 540 1080 1620 2160 2700 3240
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Figure 4. State variable V(t) and control input T (t) for Singular arc, gpops, Hermite-Simpson and 5th degree simulations

Thus, the singular arc solution cannot be claimed as the solution to the indirect method. More efforts are needed

to find the indirect solution, which would provide a baseline to compare the quality of the different methods.
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Figure 4 shows the comparative of the four methods. Aircraft weight force decreases with time, aircraft lift force

is considered equal to aircraft weight force and aircraft drag force is evaluated making use of the parabolic drag

polar, therefore velocity also decrease slightly with time and due to the fact that the cost function is the aircraft fuel

consumption then the aircraft thrust force decrease with time. It is important to observe that at the end of the solution

the thrust is going to the minimum value, thus the velocity is close to the stall value to save fuel.

6. Conclusion

This study the performances of four trajectory optimization methods: Hermite-Simpson, 5th degree Gauss-Lobatto,

Radau Pseudospectral collocation methods using goops and singular arc solution, to solve a constant altitude and

course flight with fixed arrival time, ISA atmosphere and without wind.

5th degree Gauss-Lobatto collocation method provides the lest fuel consumption solution but Hermite-Simpson

collocation method is the fastest with a solution no so far from the 5th degree.

Gpops is a user friendly matlab tool, with few programming tasks a good solution is accomplished. However, the

collocation methods Hermite-Simpson and 5th degree have been programmed using AMPL modeling language which

needs more programming effort but once the codification is done they produce fast and good solutions.

Singular arc solution is flyable procedure due to the thrust is almost constant and the velocity is constantly de-

creasing. Nevertheless, this method does not produce the most optimal solution.

The future goals are to program a pseudospectral method , a dynamic programming method and the indirect

method in AMPL modeling language and also to compare all these method in vertical or/and horizontal profile flight

in order to evaluate the performance of them.
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