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Abstract— (Abstract) 

The presence of convective cells makes sector demand 
irregular and not easy to predict, increasing traffic 
complexity and reducing sector’s capacity. In this paper we 
present a novel, integrated trajectory predictor, which 
considers multiple sources of meteorological uncertainty at 
different temporal and geographical scales together with 
take-off uncertainty. The trajectory predictor is used to 
calculate the demand, presenting a multi sector traffic 
assessment of demand (and complexity under convective 
weather. The combination of probabilistic demand) the 
assessment of complexity due to weather constitutes the 
groundwork for the creation of a tool that will enable FMPs 
a better understanding of complexity in adverse weather 
conditions. 

Keywords-Trajectory Predictor, FMP, Demand, Complexity, 
Meteorological uncertainty. 

I.  INTRODUCTION  
The main task of Flow Management is to achieve the optimum 
exploitation of the capacities of all Air Traffic Control (ATC) 
units (in particular, the Area Control Centre, ACC), taking into 
account the staffing situation of the unit and other impacting 
factors like weather or technical issues. In this task, Flow 
Management Position (FMP), an operational position located in 
the ACC Ops Room, has access to all filed Flight Plans (FPL), 
which must be filed 3 hours before the Estimated Off Block 
Time (EOBT), and uses this information together with 
meteorology (MET) and other airspace data (like segregated 
areas, military zones, etc.) to assess the number of flights and 
complexity of oncoming traffic. When the FMP detects an 
excess of demand over capacity, he/she coordinates possible 

traffic flow measures both at the ACC and the Network 
Manager (NM) levels.  
The presence of convective cells makes sector demand irregular 
and not easy to predict, increasing traffic complexity and 
reducing sector’s capacity. The provision of an accurate 
prediction of the development of convective cells inside a 
sector, a trustworthy forecast and characterization of the future 
sector demand, and a reliable estimation of the impact of the 
convective weather in the sector capacity, would lead the FMP 
to take anticipated, appropriate, and timely flow measures that 
increase the ATC efficiency and reduce delays. Readers are 
referred to [1], a survey of weather-ATM integration that 
includes, among others, a review of concepts such as 
Convective Weather Avoidance Models, Weather Avoidance 
Fields, Route Availability, and methods to determine the 
impact of convective weather on sector demand and maximum 
sector capacity. The stochastic evolution of the atmosphere 
makes the probabilistic approach the appropriate one to tackle 
this problem. We rely on Ensemble Weather Forecasting 
(EWF), which has proved to be an effective way to quantify 
MET forecast uncertainty. 
The contribution of the paper is twofold: 1) first, we present a 
novel, integrated trajectory predictor, which considers multiple 
sources of meteorological uncertainty at different temporal and 
geographical scales; 2) second, we present a multi sector traffic 
assessment of demand (sector loading) and complexity under 
convective weather. 
Indeed, the estimation, modeling, and propagation of 
uncertainty in individual aircraft trajectories due to wind [2-6], 
convection [7-11], and other factors (e.g., departure time, 
aircraft intent, aircraft performance) [12-13] is an active field 
of research. Nevertheless, to the best of authors’ knowledge, an 
appropriate handling of best-suited meteorological sources (at 
temporal, geographical scales) is lacking in the literature. For 
more insight, we refer readers to a recent survey on aircraft 
trajectory prediction [14], including the references and 
challenges raised therein. Thus, the first contribution of the 
paper aims at bridging this research gap, providing an enhanced 
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tool to predict aircraft trajectories, characterize uncertainty, and 
with it being able to statistically characterize the demand in a 
given sector [15]. 
When it comes to sector complexity, most of the previous 
research mainly focused on calculating the deterministic value 
of complexity in ideal weather conditions [16-18], with some 
exceptions where [19] calculated the impact of convective 
weather on complexity, but without determining the uncertainty 
of such complexity value. In the case of [20], where the authors 
proposed a new method to evaluate complexity using a 
probabilistic measure of the airspace occupancy, they didn't 
consider the effect of convective weather on the complexity 
estimations. Nevertheless, to the best of authors' knowledge, 
the determination of uncertainty in complexity prediction, due 
to convective weather and other probabilistic parameters, is still 
to be explored. This is the second contribution of the paper. 
All in all, both the combination of probabilistic demand (sector 
loading) the assessment of complexity due to weather 
constitutes the groundwork for the creation of a tool that will 
enable FMPs a better understanding of complexity in adverse 
weather conditions. 
The paper is structured as follows: In Section II, we provide the 
problem framework, including the concept and the 
characterization of the different sources of uncertainty. We 
devote Section III to the trajectory predictor. In Section IV we 
present the case study and, thereafter, in Section V the results 
of the application. We finalize the paper drawing some 
conclusions. 

II. PROBLEM FRAMEWORK 

A. Concept 
The framework for this paper is the integration of 
meteorological (MET) forecast uncertainty into the decision-
making process for Flow Management Positions (FMP) under 
adverse weather. Thus, this paper deals with the provision of 
probabilistic traffic forecasts under convective weather for a 
forecasting horizon of 8 hours. Given the forecast lead time of 
8 hours, the focus of the paper is on the tactical flow 
management phase. 
Given the forecast lead time of 8 hours, and the stochastic 
evolution of the atmosphere, the traffic predictions are affected 
by MET forecast uncertainty, so that a probabilistic approach 
becomes the appropriate one.  
The traffic analysis relies on a probabilistic trajectory predictor 
(described in Section III), which provides 4D trajectories with 
a measure of uncertainty. For each flight, the trajectory 
predictor developed captures, not only the MET uncertainties, 
but also the uncertainty in the storm avoidance strategy and the 
uncertainty in the departure time for those aircraft that are still 
on ground. 

B. Characterization of Uncertainty 
Three sources of uncertainty are considered in this work: 1) the 
meteorological uncertainty (inherent to the forecast process); 2) 
the operational uncertainty linked to the storm avoidance 
strategy; and 3) the uncertainty in the take-off time. 

1) Weather Forecast Uncertainty 

In this work, weather forecast uncertainty is quantified by a 
probabilistic prediction technique called Ensemble Weather 
Forecasting (EWF). Three types of probabilistic weather 
forecasts are considered: ensemble nowcasts, limited area, and 
global Ensemble Prediction Systems (EPS). 
The probabilistic forecast of the convective weather for the next 
hour using the STEPS (Short-Term Ensemble Prediction 
System) technique. The convective weather realizations 
include a characterization of individual cells, with their 
positions, ranges, strengths, and cloud heights. Observation 
data comes from weather radars and satellite observations. 
The wind and temperature distributions are obtained from the 
EPS forecasts. These forecasts are also processed to generate 
products that characterize the convective activity. The main 
products obtained are the global EPS from ECMWF (the 
European Centre for Medium-Range Weather Forecasts) and 
the limited-area high- resolution EPS from COSMO-D2-EPS 
from Deutscher Wetterdienst. 
2) Storm Avoidance Uncertainty  

Pilots keep distances from the individual storms that differ 
substantially from one pilot to another [21]. These distances 
depend on the pilot’s individual perception of risk and his/her 
personal risk mitigation strategy. As a result, the overall 
avoidance effect appears as being stochastic. 
In this paper, the short-term trajectory prediction (in a time 
horizon of 1 hour) relies on a storm avoidance tool described in 
Section III.A. One of the inputs in this prediction is a risk level, 
which is an adjustable parameter intended to define the 
avoidance strategy. A small-risk level value is equivalent to 
anticipate storm avoidance, preventing the avoidance trajectory 
from zigzagging around the storm cells and from entering 
narrow corridors between pairs of them. On the contrary, a 
high-risk level value is equivalent to face the eventual 
incursions into storm cells tactically. Therefore, the risk level 
allows us to model different flight behaviors, between 
underreacting and overreacting to the weather hazard 
information. 
An ensemble-based approach is considered for the storm 
avoidance uncertainty. In this work, a set of five possible risk 
level values are considered for each flight: 28, 49, 68, 84, and 
95%. These risk level values have been chosen through a model 
fitting process so as to accurately characterize the operational 
uncertainty. Specifically, avoidance trajectories obtained for 
different risk level values (provided the short-term trajectory 
predictor) have been compared with realistic trajectories 
simulated in an artificial traffic scenario. 
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3) Take-Off Time Uncertainty 

The take-off time 𝑇𝑇𝑂 is given by a nominal value (filed in the 
Flight Plan (FP)), which can be seen as an estimated take-off 
time (ETOT) plus a random variable (ΔTOT) representing the 
deviation with respect to it, that is, the difference between the 
actual take-off time (ATOT) and the ETOT: 

𝐴𝑇𝑂𝑇 = 𝐸𝑇𝑂𝑇 + 𝛥𝑇𝑂𝑇 

An ensemble-based approach is also considered for the 
deviation of the take-off time. In this work, a set of ten possible 
values are considered. These values depend on the time to the 
estimated off-block time (EOBT) in a such a way that the 
sooner the departure (i.e., the closer to the EOBT) the smaller 
the spread in the take-off time error or, equivalently, the smaller 
the uncertainty in the take-off time. 
The sets of values have been derived from probability 
distribution functions provided by EUROCONTROL, who 
recently conducted a study on how to improve take-off time 
predictions computed by the Enhanced Traffic Flow 
Management System (ETFMS) by applying an explainable 
machine learning approach (see [22]). As examples, the ten 
values, x1 to x10, for 15 to 30 minutes to EOBT and for 180 to 
240 min are presented in Table 1. 

Table 1. Examples of ensemble of take-off time deviations [min] 

Time to 
EOBT 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

(15,30] -13,6 -7,0 -4,0 -2,0 1,0 3,0 6,0 10,0 17,7 38,0 

(180,240] -63,5 -16,2 -8,2 -4,0 -1,0 3,0 7,0 13,0 23,1 52,0 

 

III. PROBABILISTIC TRAJECTORY PREDICTION  
The framework devised for trajectory prediction for a time 
horizon of 8 hours consists of two different trajectory predictors 
(TP): short-term TP (up to 1 hour), based on ensemble 
nowcasts, and long-term TP (from 1 hour to 8 hours) based on 
EPS forecasts. See a sketch in Figure 1. 
 

 
Figure 1: Concept for the trajectory prediction 

A. Short-Term TP  
A general view of the probabilistic short-term trajectory 
predictor is shown in Figure 2. In this approach, pSAT 
(probabilistic Storm Avoidance Tool) and SAT (deterministic 

Storm Avoidance Tool), are used sequentially. A preliminary 
version of these tools were presented in [23]. They have been 
enhanced in this work with new features such as wind and 
temperature effects, three-dimensional trajectories, and 
information about cloud top height (CTH). They both make use 
of BADA 3 as aircraft performance model. 

 
Figure 2: Short-term trajectory predictor. 

First, pSAT receives as input a reference trajectory (with given 
initial condition), an ensemble nowcast (including the CTH 
information, which is deterministic), a given value of risk level, 
and a wind and temperature forecast. The reference trajectory 
starts at the current position of the aircraft and describes the 
future intentions of the flight as known by the ATC system, 
including waypoints and cruise level. A meteorological 
nowcast is first preprocessed to identify the storm cells 
considering a reflectivity threshold of 38 dBz; this is done for 
each ensemble member and time step. The considered forecast 
for wind and temperature is a deterministic one, since 
uncertainties in these variables are marginal in a time horizon 
of 1 hour. This deterministic forecast is obtained as the average 
of the ECMWF-EPS members. The output of pSAT is a unique 
avoidance route (called Probabilistic Avoidance Route), which 
considers the avoidance strategy that corresponds to the given 
risk level value and serves as a revised reference trajectory. 
Second, when the aircraft follows the revised reference 
trajectory, still some storm cells might be encountered for some 
of the nowcast ensemble members, which of course must be 
avoided. Hence, after the application of pSAT, an ensemble-
based application of SAT (ensemble SAT) is performed. That 
is, the deterministic storm avoidance tool is applied several 
times, to the different members of the ensemble nowcast, to 
obtain an ensemble of predicted trajectories that accounts for 
the meteorological uncertainty.  
Finally, repeating this process for a set of values of the risk level 
and a set of initial conditions (that is, a set of reference 
trajectories), we end up deriving a final set of ensembles of 
predicted trajectories, which accounts not only for weather 
uncertainty, but also for operational uncertainty and uncertainty 
in the initial condition.  
The number of different predicted trajectories for one flight is 
𝑅 × 𝐶 × 𝑀, where 𝑅 is the number of considered risk levels, 𝐶 
is the number of initial conditions for that flight, and 𝑀 is the 
number of members of the ensemble nowcast. The number of 
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risk levels and nowcast members is the same for all flights, but 
the number of initial conditions can be different; consequently, 
the number of predicted trajectories can also be different 
between flights.  

B. Long-Term TP 

For the trajectory segments not covered by the short-term 
trajectory predictor, we need to build a trajectory prediction 
method to produce probabilistic forecasts of the aircraft’s 
progress along its flight path. Thus, we have built a Parallel 
Probabilistic Trajectory Predictor (PPTP) to propagate 
uncertainties from 1h to 8 hours look-ahead time, following a 
given Flight Plan. The PPTP propagates two types of 
uncertainties: 

● uncertainty on the initial conditions (coming from 
trajectories calculated using the short-term TP), and 

● MET uncertainties due to: winds, temperature 
variations, and exposure to convection. 

The main aim of this system is to produce a set of trajectories 
that characterizes the distribution of uncertainty across 
different scenarios. The PPTP performs this task by integrating 
the flight plan under multiple weather and delay scenarios in 
parallel, using general-purpose programming on Graphics 
Processor Units (GPGPU) techniques. 
1) Aircraft dynamics 

As commonly done in Air Traffic Management applications, 
we work with a point-mass model of the motion of the aircraft, 
where the aerodynamic and propulsive models are provided by 
an Aircraft Performance Model such as BADA 

2) Numercial Method 

Given a flight plan F, describing the route and the 
altitude/airspeed schedule, a set of initial conditions for time 
and mass, and a member of an ensemble forecast (Wi), we 
perform a trajectory integration process to compute the final 
mass and time (and the mass and time at any intermediate 
waypoint). We discretize every airway segment of the route 
into an equispaced grid of geographical points. Then, the 
resulting grid is employed to integrate the equations of motion 
through Heun’s method, a second-order predictor corrector 
scheme.  
The PPTP is implemented using GPGPU techniques. 
Therefore, the same equations of motion can be integrated in a 
large number of different scenarios at negligible additional 
computation cost, since these trajectories will be integrated in 
parallel. The PPTP can employ two nested levels of scenario 
parallelism: 
● In member-specific parallelism, each trajectory or group 

of trajectories is integrated using different ensemble 
members, allowing us to characterize the uncertainty due 
to weather forecast uncertainty. Different temperature 
realizations lead to different translations of the Mach 

number into true airspeed; more importantly, stronger, or 
weaker winds produce different groundspeeds, which 
leads to growing dispersion in the times and masses at 
specific waypoints. 

● In event-specific parallelism, we can draw multiple 
realizations of the delay events model (see Section III.B.3) 
for each ensemble member. Alternatively, a single 
realization of the delay event model can be performed for 
each member. 

3) Delay event model 

The integration of delay due to exposure to convection is 
modelled with a Compound Poisson Process (CPP) along the 
route. In this model, temporal delay events arrive at a rate λ 
(measured in number of events per nautical mile flown). Each 
delay event represents an increment (or decrement) in flight 
time at the corresponding point in the route; these increments 
are modelled as independent random variables that follow a 
distribution that is dependent on the state of the aircraft at that 
point. They represent unplanned modifications of the route, 
such as small or large deviations due to convective weather 
avoidance procedures, conflict resolution deviations, “direct-
to” shortcuts granted by Air Traffic Control. For the current 
application, we will model these delays as normal variables, 
with mean μ and standard deviation σ. 

C. Unified Framework 
To determine the sequence of TPs to be applied to a given 
flight, the key principle is to use, at each time and location, the 
best available meteorological forecast product. An ensemble 
Nowcast is preferred over an EPS, and a local-area EPS is 
preferred over a global EPS. Hence, whenever the ensemble 
Nowcast is available, the Nowcast-based TP will be applied; if 
not, an ensemble-based TP will be applied, preferably based on 
COSMO-D2-EPS (if possible). Therefore, the sequence of TPs 
will follow from the sequence of the best forecast product 
available. The latter will depend both on the flight considered 
and the spatio-temporal coverage of the different 
meteorological products. 
As for the flights, the position at the prediction time 𝑇𝑃 
(provided by the surveillance system if the aircraft is airborne) 
and the Flight Plan FP (provided by the Network Manager) are 
assumed to be known, including the clearances provided by 
ATC for airborne flights. The aircraft status is also known, i.e., 
whether the aircraft is already airborne at 𝑇𝑃 or still on ground. 
To properly define a unified framework for trajectory 
prediction subject to different sources of uncertainty, two 
research questions have been identified: How and when to 
transition from a TP to another for a given flight. 
1) Transition mode between TPs 

A propagating and clustering approach is proposed. This means 
that, when a transition from a TP to another one is identified, 
the final conditions of the predicted trajectories are reduced to 
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a smaller set of representative final conditions which are 
ensemble of initial conditions for the application of the next TP.  
There are several well-known clustering methodologies. We 
have selected the constrained K-means clustering 
methodology, where the size of the cluster has been constrained 
to be equal and the number of clusters has been set to 10.  
2) Transition sequence between TPs 

As the availability of the ensemble Nowcast depends on both 
space and time, we classify flights as follows. First, flights are 
classified depending on whether the aircraft is already airborne 
at 𝑇𝑃 or still on ground, and, in this latter case, if it is expected 
to take-off in the next hour or not. Second, according to the 
position at 𝑇𝑃, flights can be either inside the airspace with 
available Nowcasts or outside that airspace; these cases will be 
referred to as inside Nowcast and outside Nowcast. 
Alternatively, flights can be either inside the airspace with 
available COSMO-D2-EPS or outside that airspace; now these 
cases will be referred to as inside COSMO and outside 
COSMO. According to these criteria, any flight belongs to one 
of the following six categories: 

● Airborne & outside Nowcast. 
● Airborne & inside Nowcast. 
● On ground & outside Nowcast with the first ensemble 

member of the take-off time less than 𝑇𝑃 + 1h. 
● On ground & outside COSMO with all ensemble members 

of the take-off time greater than or equal to 𝑇𝑃 + 1h. 
● On ground & inside Nowcast with the first ensemble 

member of the take-off time less than 𝑇𝑃 + 1h. 
● On ground & inside COSMO with all ensemble members 

of the take-off time greater than or equal to 𝑇𝑃 + 1h. 

The sequence of TPs can be obtained by applying an 
appropriate decision tree. Transitions between TPs are 
triggered by transition events, namely, reaching either a space 
boundary or a time instant. Termination criteria are defined, 
which stop the trajectory prediction as the rest of the trajectory 
is useless for the FMP. These termination criteria include to exit 
the airspace of interest and to reach the maximum look-ahead 
time for trajectory prediction, i.e., 𝑡=𝑇𝑃 + 8h. 

IV. CASE STUDY 
The selected case study corresponds to June 12th, 2018, a day 
with high convection intensity. The prediction is performed at 
12:00 for the next 8 hours. 

A.      Airspace 
The Austrian airspace under the control of ACC WIEN has 
been selected, which is divided into five geographical regions 
(B, E, N, S and W), and each region into five vertical layers 
(from 1 to 5). In total, 38 elementary volumes are used to define 
this airspace, leading to around 60 possible different ATC 
sectors and 190 different sector configurations. The 
configuration chosen is 10A1, composed of 10 sectors, planned 
to be active from 11:00 to 14:30. 

B. Weather 
Three weather products are considered (the last available 
forecasts at 12:00 are used): 

● Ensemble Nowcast. Generated at 11:45 and interpolated 
every 5 minutes. Convective cells are identified and 
enlarged with a safety margin of 13.5 NM. A common 
cloud top height has been also considered (flights can 
overfly cells with a margin of 5000 ft). 

● COSMO-D2-EPS. Generated at 09:00 and interpolated 
every 15 minutes. Convective areas are identified using 
two indicators: Lifted Index and Precipitation Intensity. 

● ECMWF-EPS. Generated at 00:00 and interpolated 
every 15 mins. Convective areas are identified using  the 
Total Totals Index and Convective Precipitation. 

C. Traffic 
Historical traffic data has been retrieved from Eurocontrol’s 
R&D Data Archive. The flight plan’s data have been used. 
The traffic consists of the aircraft airborne at 12:00 or expected 
to take-off in the next 8 hours (including the uncertainty in the 
take-off time) which plan to cross the Austrian airspace plus a 
surrounding area of 50 NM. In total, 2542 flights (393 airborne 
flights at 12:00, and 2149 flights expected to depart in the next 
8 hours). 

 
Figure 3: Austrian Airspace 

 
Figure 4: Nowcast generated at 11:45, 

prediction for 12:30. 

 
Figure 5: Planned routes of the flights considered 

in the application. 
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V. APPLICATIONS  

D. Probabilistic Demand Analysis 
As an example of a probabilistic traffic analysis, next the 
methodology to determine the probability distributions of the 
occupancy count for a single ATC sector is shown. The 
probabilistic entry count can be obtained in an analogous way. 
Each flight 𝑖 (𝑖 = 1, … , 𝐹) is considered to be affected by the 
three uncertainty sources: the meteorological uncertainty (with 
𝑀 ensemble members), the operational uncertainty (with 𝑅 
ensemble members), and the uncertainty in the initial condition 
(with 𝐶 ensemble members). For different flights, it is assumed 
that the meteorological uncertainty is fully correlated (as they 
all share the same weather information) whereas the uncertainty 
in the initial conditions and in the operational uncertainty (only 
for the short-term prediction) are statistically independent. 
Therefore, it is useful to refer to each member of the trajectory 
ensemble using not just one index, but two indices: 𝑘 (𝑘 =
1, … , 𝑀) for the weather ensemble member considered, and 𝑙 
(𝑙 = 1, … , 𝑈, where either 𝑈 = 𝑅 · 𝐶 or 𝑈 = 𝐶) for the 
combination of uncorrelated uncertainty sources. 
The three-dimensional position of flight 𝑖 for weather ensemble 
member 𝑘 and uncorrelated uncertainty member 𝑙 at time 𝑡, is 
denoted as 𝑥𝑖

[𝑘,𝑙](𝑡). If a trajectory 𝑥𝑖
[𝑘,𝑙] crosses the ATC sector 

𝑄 times, then the time spent inside the sector is given by 

𝑇𝑖
[𝑘,𝑙] = ⋃𝑞=1

𝑄 [𝑡𝑖,𝐸𝑞
[𝑘,𝑙] , 𝑡𝑖,𝑋𝑞

[𝑘,𝑙]], 

where 𝑡𝑖,𝐸𝑞
[𝑘,𝑙] are the entry times and 𝑡𝑖,𝑋𝑞

[𝑘,𝑙] are the exit times. 

The occupancy count is defined as the number of flights inside 
the sector during a selected time period 𝑃𝑗,  

𝑃𝑗 = [𝑇𝑃 + (𝑗 − 1)𝛿𝑡, 𝑇𝑃 + (𝑗 − 1)𝛿𝑡 + 𝛥𝑡), 𝑗 = 1,2, …, 
where 𝛿𝑡 is the time step (the difference between the start times 
of two consecutive periods), and 𝛥𝑡 is the duration of each 
period. Since the time spent inside the sector is uncertain 
(characterized by the ensemble of entry and exit times), the 
aircraft can enter or exit the sector in different time periods and, 
therefore, the occupancy count is also uncertain.  
We define an occupancy function for flight 𝑖, weather ensemble 
member 𝑘, uncorrelated uncertainty member 𝑙, and period 𝑃𝑗, 
denoted as 𝑂𝑗

[𝑘,𝑖,𝑙]. It takes the value 1 when the aircraft is inside 
the sector during this time period and the value 0 if the aircraft 
is outside. The event that the flight 𝑖 is inside the sector at 
period 𝑃𝑗 for the weather ensemble member 𝑘 can be modelled 
as a random variable, 𝑧, with a Bernoulli distribution, whose 
corresponding probability mass function can be formulated as: 

𝑝𝑗,𝑂
[𝑖] (𝑧|𝑘) = {

1
𝑈 ∑ 𝑂𝑗

[𝑘,𝑖,𝑙]
𝑈

𝑙=1

, 𝑖𝑓 𝑧 = 1 

 1 −
1
𝑈 ∑ 𝑂𝑗

[𝑘,𝑖,𝑙]
𝑈

𝑙=1

, 𝑖𝑓 𝑧 = 0, 

where 𝑧 = 1 represents that the aircraft does occupy the sector, 
and 𝑧 = 0 that it does not. 

Since the occupancies of the flights at period 𝑃𝑗 and weather 
ensemble member 𝑘 are statistically independent, the total 
amount of flights inside the sector at that period and weather 
member is a random variable 𝑂𝑗

[𝑘] that follows a Poisson 
binomial distribution. Its probability mass function 𝑝𝑗,𝑂(𝑜|𝑘), 
with 𝑜 ∈ {0,1,2 … , 𝐹}, is obtained by convoluting the 
probability mass functions of the flights, that is, 𝑝𝑗,𝑂

[𝑖] (𝑧|𝑘).  

Once 𝑝𝑠𝑗,𝑂(𝑜|𝑘) is computed, the marginal distribution is 
obtained by marginalizing over the weather ensemble 
members. Considering the general relation between conditional 
and marginal probabilities and assuming that the different 
members of the weather ensemble are equally likely, the total 
number of flights occupying the sector at time period 𝑃𝑗, 
namely 𝑂𝑗, is given by the following probability mass function: 

𝑝𝑗,𝑂(𝑜) =
1
𝑀 ∑ 𝑝𝑗,𝑂(𝑜|𝑘).

𝑀

𝑘=1

 

Figure 3 shows the occupancy count of sector B15 for time 
periods between 12:00 and 13:00 with 𝛿𝑡 = 𝛥𝑡 = 1 min. The 
occupancy is represented as a heatmap. The 5th, 50th (median), 
and 95th percentiles are also depicted. The median represents 
the central value, and it goes between 3 and 15 flights, with a 
clear peak between 12:10 and 12:15. The difference between 
the 95th and 5th percentiles is a measure of the dispersion. In 
this application, the dispersion ranges from 0 to 7, clearly 
growing as the time horizon increases. 

 
Figure 6: Occupancy count of sector B15 

E. Probabilistic Complexity Analysis 
In aviation, complexity is defined as a measure of difficulty of 
a given traffic situation imposed upon an air traffic controller 
[24]. Conventionally, complexity is determined as a 
deterministic value of a given traffic situation via expert-based, 
indicator-based or the interaction-based estimation. This 
research proposes a methodology to determine a probabilistic 
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value of complexity score based on the multiple variations of a 
traffic scenario.  
As previously mentioned, multiple possible trajectories were 
derived from a same starting data set. One variant of a traffic 
scenario would be a combination of one possible trajectory for 
each aircraft in given data set. For each variant a deterministic 
value of complexity can be calculated. By calculating 
complexity for a large sample of traffic scenario variants it is 
possible to determine distribution of complexity scores. 
3) Methodology 

The complexity calculation method used in this research was 
interaction-based air traffic complexity estimation method 
proposed by EUROCONTROL Performance Review 
Commission (PRU) in a final report defining complexity 
metrics for air navigation service providers benchmarking [25] 
for this research, modifications proposed by previous [26] have 
been applied. Such modifications consist of reduction of a time 
interval from 60 minutes to 20 minutes, and implementation of 
a weather interaction indicator.  
Since traffic scenario variants are created by combining one 
possible trajectory, out of many available trajectories, for each 
flight in the scenario, the number of scenario variants is such 
that it makes complexity calculation for each variant 
impossible. For example, for 20 possible trajectories per 
aircraft, with 696 unique aircraft crossing observed airspace in 
case of short-term TP, a number of traffic scenario variants 
would be 20696 for a single forecast of EWF (weather scenario). 
Since it is impossible to calculate a complexity score for each 
traffic scenario variant, a semi-random sampling without 
replacement method was introduced. To create one sample, all 
trajectories were initially sorted according to weather scenario. 
Afterwards, for each aircraft, a separate pool of all possible 
trajectories related to that weather scenario was created. Traffic 
scenario variant is created by randomly selecting a single 
trajectory from each pool. Once used, selected trajectory is 
removed from the pool of possible trajectories, and it cannot be 
used again until the pool is depleted. Using this sampling 
method, traffic scenario variants were created using randomly 
selected aircraft trajectory while still ensuring that one 
trajectory will not be used more than the others.  
To determine the suitable number of samples for reliable 
results, a robustness analysis was performed on 1500 samples 
created from Short-term TPs 
and 1000 samples created 
from Long-term TPs. In the 
robustness analysis a smaller 
pools of randomly selected 
samples were created (starting 
from 100 samples and 
incremented by a 100). For 
each pool a mean and standard 
deviation was calculated. This 
analysis shows that, 

after 500 samples results do not deviate significantly. With a 
difference in mean value less than 1% between 500 samples and 
1500 samples, increase in number of samples after 500 brings 
only minor benefits.  
4) Results 

All complexity calculations for one time interval are combined 
and presented via kernel density estimate (density curve) 
enabling estimation of the probability density function of a 
variable. The width of the curve corresponds with the 
approximate frequency of data points in each region. Example 
of calculated complexity results is given by Figure 7; the 
vertical axis of the plot gives the range of calculated complexity 
scores for the given scenario while the width signifies the 
number of traffic scenario variants having the same calculated 
complexity score.  
In Figure 7, the first few plots are compressed and wide. Such 
characteristics correspond to developing traffic. In this 
situation, possible weather scenarios and predicted trajectories 
did not have time to diverge significantly. As the simulation 
progresses, plots spread and become thinner. The cause of such 
change is that the same aircraft, depending on the weather 
scenario and mitigating actions, will have different trajectories 
thus occupying different cells in the airspace resulting in 
different interactions. It can be concluded that with the increase 
in prediction time horizon, variability of calculated complexity 
scores increases but it remains bounded and still provides 
useful information. 
This method of complexity calculation and presentation 
enables FMPs to directly assess uncertainty in complexity 
prediction thus enabling better decision-making, more so in 
situations with low standard deviations of complexity. In 
situations with greater standard deviations, it is more difficult 
to determine predicted complexity exactly, however, the trend 
line shown in Figure 4 informs the FMP on probable future 
increase or decrease in complexity. 

VI. CONCLUSIONS  
A methodology to predict probabilistic aircraft trajectories 
using multi-scale convective weather information has been 
presented. We have shown how to propagate trajectory 
uncertainties from a given current state up to look-ahead times 
of 8 hours Integrating different MET products and temporal 

Figure 7: Violin plot of complexity score 
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scales. Ensemble-based nowcasts, regional, and global 
coverage EPS forecasts have been integrated. 
To illustrate the potential benefits of the proposed 
methodology, two interesting applications where probabilistic 
aircraft trajectories are the key input have been addressed: 
probabilistic demand analysis and probabilistic complexity 
analysis. Results show that the FMP can benefit from an 
enhanced situational awareness, since not only predictions 
include adverse weather effects, but they are also stochastic, so 
a quantification of the prediction uncertainty is provided. 
Probabilistic demand predictions can be combined with 
capacity information to derive congestion indicators commonly 
used by FMP. In that case, since adverse convective weather 
may also have an impact on sector capacity, a weather-
dependent capacity should be estimated based on the same 
weather information. This is left for future research. 
Another possible direction for further research is probabilistic 
detection of complexity hotspots within the observed sector. By 
introducing uncertainty to the already detected high complex 
areas (colored with red on figure 8), FMP would get a tool for 
predicting possible areas of high complexity and probability of 
their realisation. 

 
Figure 8: Complexity visualization tool 
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