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Abstract—In recent years, convective weather has been the
cause of significant delays in the European airspace. With climate
experts anticipating the frequency and intensity of convective
weather to increase in the future, it is necessary to find solutions
to mitigate the impact of convective weather events on the
airspace system. Analysis of historical air traffic and weather
data will provide valuable insight on how to deal with disruptive
convective events in the future. We propose a methodology for
processing and integrating historic traffic and weather data to
enable the use of data-driven algorithms to predict network
performance during adverse weather. In this paper we process
aircraft trajectory and storm observation data to test preliminary
algorithms for predicting airspace capacity. Data sources include
Demand Data Repository from EUROCONTROL and the Rapid
Developing Thunderstorm product from EUMETSAT.
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I. INTRODUCTION

Proper execution of Air Traffic Flow Management (ATFM)
requires well organised collaboration between stakeholders,
including aircraft operators, Air Navigation Service Providers,
MET service providers and the Network Manager [1]. On days
with strong thunderstorm activity, the airspace system condi-
tions can be highly volatile making it difficult to balance air-
craft operator demand with airspace capacity. Thunderstorms
can move quickly and exhibit lifecycles that can develop and
dissipate within 2 hours, making them difficult to anticipate
over longer time horizons. As a result, convective weather
must be tactically managed during the execution of a flight,
having significant impact on the the efficiency of the ATM
system. In 2018, 4.8 million minutes of en route ATFM delay
were due to adverse weather in the European airspace, a 124
percent increase vs 2017 [2]. In the top 10 days of convective
activity over Europe in 2018, more than 1 million minutes of
en route delay were accumulated due to adverse weather, with
the cost of ATFM delay estimated at e100 per minute [3],
weather has a significant financial impact on the system.

The motivation behind this research is to improve the
ATFM process around convective weather events. By collect-
ing historical data related to traffic demand, ATFM regulations,

traffic trajectories, weather forecast, and storm observations
we ambition to build machine learning algorithms to better
predict demand and capacity of the system. Our goal is
to improve the ATFM process through better integration of
weather information during the tactical and pre-tactical phases.

II. BACKGROUND

Convection is a well known aviation hazard; turbulence,
wind shear, lighting and hail are elements within thunder-
storms that can be catastrophic for aircraft. Aviation research
related to thunderstorms and convection has typically focused
on flight specific solutions, such as trajectory optimisation
during the flight planning stage [see 4, and references therein].
Also, in the United States where convective weather is more
prevalent, decision support tools have been developed to
analyse active flights in the en route environment and find sim-
ple and efficient route corrections around convective weather
[5]. Despite these developments, a network wide perspective
focused on reducing the impact of adverse weather on the air
traffic flow management process is lacking. Most research on
air traffic flow management has focused on dealing with en
route sector capacity constraints using integer programming
techniques [6, 7], while effective, the formulation of these
methods rely on predefined capacity values making it difficult
to incorporate a dynamic weather environment.

Performing ATFM operations in a convective weather en-
vironment is particularly complex due to the dynamic nature
of thunderstorms and their effect on air traffic demand and
airspace capacity. At different time horizons, the weather
information available widely varies. For longer time horizons,
weather information is limited to numerical weather prediction
(NWP) products with varying accuracy, these have proven
to be very useful and research has been done on translating
probabilistic information from ensemble NWP into air traffic
capacity forecasts [8]. However, the large computational effort
required to run NWP tools results in limitations in spatiotem-
poral granularity and the refresh rate of the forecast, typically
around 12 hours.

For shorter time horizons, the weather information relies
heavily on observations and extrapolation of radar and satellite,
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(a) Convective cell schematic.1 (b) Rapidly Developing Thunderstorm (RDT) product visualisation.

Figure 1: Convective cell schematic (1a) and RDT visualisation (1b). Figure 1b shows data from June 7th, 2018 at 15:30. Hatch pattern contours indicate
shelf clouds, colors represent storm severity, while an ”X” indicates the location of overshoots.

data can be provided every 15 minutes proving to be fairly
accurate but limited by the forecast time horizon, typically
less than one hour. Detecting capacity-demand imbalances in
the airspace network due to weather should be done on a
continuous basis over varying time horizons. Indeed, one of
our future research objectives will be to integrate weather data
from various sources and multiple time horizons.

Our research will involve applying data science techniques
on historical traffic and weather data. We intend to develop
machine learning algorithms capable of predicting and quanti-
fying the capacity and demand imbalances in the network due
to weather over multiple time horizons.

The analysis will be performed in two steps. Step 1 will
focus on relating storms and traffic. By analysing historical
data of storm observations and air traffic patterns we hope to
understand how convective weather impacts the air traffic flow
management process. In this step, we focus on the research
question: ”If we had access to a perfect weather forecast, how
would we implement ATFM solutions?” Applying machine
learning and data science techniques to ATM is an extremely
active area of research, and has proved to useful in predicting
elements such as predicting controller workload [9] and flight
trajectories [10, 11]. We are confident these techniques will
also be viable for capturing the relation between weather and
traffic patterns.

Once we understand how storms impact the air traffic sys-
tem, Step 2 will focus on improving our ability of predicting
storms over longer time horizons. By analysing historical
numerical weather prediction forecast and storm observations
we hope to enhance our capability of anticipating storms that
are likely to impact the network. In this step, we acknowledge
that having a perfect weather forecast is not possible, and
consider the followup question: ”How can we still implement
ATFM solutions based on a probabilistic weather forecast?”.
The concept of using machine learning methods to enhance
weather prediction is also an active area of research. Con-

volution LSTM networks and support vector machines have
proven successful for nowcasting applications [12, 13], as well
as forecasting techniques that combine NWP and observations
as input [14].

For this paper we will limit the scope to Step 1, relating
storm observations and air traffic patterns. We will assume
that we have a ”perfect weather forecast” composed of data
from storm observations, and use it to make predictions about
the air traffic patterns. We will present a methodology to
process historical storm and traffic data, as well as preliminary
algorithms to predict capacity.

III. DATA SOURCES

A. Weather Observations

The Rapidly Developing Thunderstorm (RDT) product is a
satellite based software by EUMETSAT capable of tracking
and identifying convective cloud cells i.e. storms. The RDT
product covers the geographical region of Europe, and outputs
storm data on a 15 minute interval. Furthermore, besides the
storm observations, the RDT product can also extrapolate the
cloud cell parameters to provide a nowcast of where the storm
will be in 15 minute steps up to the hour. For each cloud cell,
the RDT product defines a series of parameters capturing the
location, shape, movement, severity, and lifecycle phase. In
our research we focus on parameters defining the altitude of
the cloud top, the contour coordinates of the top cloud and
shelf cloud, the location of the overshoot, and severity of the
storm. Figure 1 shows a thunderstorm schematic identifying
the various storm features and a sample of the RDT product.

B. Air Traffic

We will use Demand Data Repository (DDR) from EU-
ROCONTROL to analyse historical air traffic patterns during
convective weather. DDR provides data describing the airspace

1Source: https://commons.wikimedia.org/wiki/File:Supercell.svg
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environment and the traffic in the network. Our research
will focus on the historical ALLFT files provided by DDR.
More specifically we will use the data from the Current
Tactical Flight Model (CTFM) trajectories of historical flights.
The CTFM uses a combination of the last filed flight plan
and available radar data to compute the closest estimate of
the flight trajectories handled by controllers on the date of
operations. Previous studies comparing CTFM trajectories to
other products such as ADS-B or FlightRadar 24, show that
CTFM trajectories may not to be as accurate [15], however,
the advantage of using the DDR is that it also provides
the Filed Tactical Flight Model (FTFM); an initial trajectory
based on the aircraft’s last filed flight plan, and the Regulated
Tactical Flight Model (RTFM) which is the same as the FTFM
model, with a change in the time component of the trajectory
to reflect the most penalising ATFM delay. Having data on
the intentions and restrictions of aircraft through the FTFM
and CTFM will be useful information to incorporate in our
models. Nevertheless, using trajectory data from ADS-B or
FlightRadar24 as input could easily be implemented in our
methodology.

IV. DATA PROCESSING

Given the spatiotemporal nature of the problem, it is nec-
essary to relate the air traffic data and storm observations in
both time and space. The idea is to integrate the various data
types onto a 4 dimensional grid. One can imagine splitting
the airspace into discrete volumes of airspace defined by
longitude, latitude and altitude, additionally we can also define
time intervals thus creating the spatiotemporal domain. In
pre-processing each data type it is important to consider the
granular scale of the grid, as the choice in granularity may
impact the degree to which our algorithm will be able to detect
imbalances.

In the vertical axis we decided to choose a non-uniform
altitude distribution that would give us more granularity in
the upper airspace, but also capture data close to airports.
In defining the vertical axis for our grid it was necessary to
reconcile between trajectory height information provided in
Flight Level and the storm cloud top information provided in
pressure. Since aircraft flying above the transition altitude fly
using Flight Levels defined by surfaces of constant pressure
measured from the ISA conditions, it is possible to convert the
trajectory Flight Levels to a pressure. As a result we ended up
with 6 altitude levels, these are defined in Table I.

TABLE I: Altitude Level Definition

Altitude Level Pressure Range Altitude Range
(hPa) FL

5 ≤ 200 ≥390
4 200-250 390-340
3 250-300 340-300
2 300-400 300-240
1 400 - 700 240 -100
0 700-Surface 100 - Surface

With a spatiotemporal grid fully defined, the next step is

Figure 2: User defined grid will determine the scale at which traffic and
weather features are extracted.

to use the various data sources to create traffic and weather
related features for each air-block.

A. Weather Observations

Using the location information of the storm cell, including
shelf cloud contour, overshoot coordinates, the cloud top
altitude, and severity type (Not Defined, Low, Moderate, High,
Very High) from the RDT product we can relate the storm
information onto our spatiotemporal grid as binary features.
Figure 3 shows a sample of the RDT weather after it is
fully processed. In mapping the RDT data onto our grid we
make the simplifying assumption that the storm projection is
constant from the cloud top altitude down to the ground, this
column like representation of convection is a common way of
modelling the weather phenomenon and has been used in other
aviation applications [16]. Figure 4 shows a visualisation of
the gridded RDT data on a map, as well as a three dimensional
rendering of our storm data, from the image we can appreciate
the vertical resolution provided by the cloud top altitude RDT
parameter.

Figure 3: Sample of processed RDT data showing storm elements that were
present at each point in our grid. The data sample shows a granularity of 0.1 x
0.1 degrees lat-lon and 15 minute time intervals. The five rightmost columns
relate to storm severity.

B. Air Traffic

The current tactical flight model trajectories from the Eu-
rocontrol DDR provides the 4D trajectory (latitude, longitude,
altitude and time) for historic flights. The data sampling rate
of these trajectories is not constant, often providing more data
points during the departure and arrival phases of a flight than at
cruise. By making the assumption of constant speed between
data points, we are able to interpolate the CTFM trajectories
to obtain points within each crossing air-block, the sampling
rate we chose to interpolate the trajectories will provide the
granularity of the spatiotemporal grid. Figure 5 shows a visual
representation of the interpolation process.
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(a) Processed RDT data in 2D (Lat x Lon) (b) 3D rendering of RDT data with altitude.

Figure 4: Visual representation of processed RDT data for June 7th, 2018 at 15:30.

Figure 5: The box on the left shows the raw CTFM trajectory for a particular
flight. The boxes on the right show a zoomed in view on a portion of the
trajectory. The blue line represents the raw CTFM trajectory, the red line
represents a resampled trajectory with interpolated points.

By working with the fully interpolated trajectories we can
filter on latitude, longitude, altitude and time to identify the
trajectory points within a given air-block in a given time
window. Since each trajectory is uniquely identified by the
Initial Flight Plan Processing System (IFPS), the number
of unique IFPS IDs provide us with the occupancy count.
Figure 6 shows a sample of traffic data once fully processed.
The columns labeled ’Time, ’Lon’, ’Lat’ and ’AltLevel’, define
the spatiotemporal location of each air-block. Since time in our
data is actually an interval, the value ’Time’ represents the start
of the time window. The column ’FlightIDs’ lists which flights
were in each air-block, and ’Count’ provides the number of
flights.

A visual representation of the traffic data is also provided

in Figure 7 showing traffic at various altitude levels and
spatiotemporal grid sizes. At lower levels we can see the traffic
is concentrated near airports, while air routes begin to emerge
at higher levels. From the image we can also appreciate the
differences in granularity of the spatiotemporal grid.

Figure 6: Sample of processed air traffic data showing the flights that were
present at each point in our grid. Sample data shows granularity of 1 x 1
degrees lat-lon and hourly time intervals.

V. CASE STUDY

In this section we will present a preliminary case study
using 65 days of historical traffic and weather data from May
4th to July 7th of 2018.

As an initial objective we would like to understand how
weather impacts the capacity in an airspace. Defining baseline
capacity values for our spatiotemporal airspace airspace is not
a trivial task. In practice defining capacity values of an airspace
during the ATFM process is also complicated, as the real ca-
pacity value depends on many other variables including sector
configuration, traffic complexity, and controller experience. In
this case study we will build models to estimate the aircraft
occupancy count in a volume of airspace for a given time
window. We will assume that the historical aircraft count in
a volume of airspace is a proxy for capacity. The goal will
be to build a model that estimates the number of aircraft in a
volume of airspace given the weather conditions.

A. Spatiotemporal Definition
In our analysis we have decided to process the data using a

grid of 0.1 x 0.1 degrees latitudinal-longitudinal, the altitude

4

 9th SESAR Innovation Days 
2nd – 5th December 2019 

ISSN 0770-1268 

 

 

 
 

 

 



Figure 7: Traffic data for June 7th, 2018 at varying altitude levels, time windows and grid granularity.

levels described in Table I, and a one hour time step window.

B. Airspace Selection

For this example we have decided to focus on the airspace
covering Maastricht Upper Area Control Centre (MUAC).
Using the coordinates provided from the EUROCONTROL
environment files we can select the air-blocks that fall within
the MUAC airspace. Figure 8 shows the MUAC airspace
represented on our grid. Since MUAC extends vertically from
FL 245 to FL660, we can estimate the volume by only
considering the air-blocks in altitude levels 2 - 5, as described
in Table I.

C. Data Features

By aggregating the data for the air-blocks that make up
the MUAC airspace, we can obtain the following parameters
representative of the traffic and weather situation in the sector.

• FlightIDs - IFPS ID of flights in sector
• CTFM Occupancy - Aircraft occupancy based on CTFM

(proxy for capacity)
• Overshoots - Number of air-blocks containing overshoot

of storm
• Storm Cell - Number of air-blocks containing a storm

cell

Figure 8: Maastricht Upper Area Control Centre represented using air-blocks.
Image shows a 2D representation, but there is a similar layer of air-blocks
for each altitude level.

• Shelf Cloud - Number of air-blocks containing the shelf
cloud of storm cell

• Not Defined - Number of air-blocks with storm severity
”not defined”

• Low - Number of air-blocks with low storm severity

5
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• Moderate - Number of air-blocks with moderate storm
severity

• High - Number of air-blocks with high storm severity
• Very High - Number of air-blocks with very high storm

severity
This list shows an initial set of parameters based on the

data processing shown in the previous section, but we could
also express other weather parameters for each air-block
such as prevalent winds, the jet stream, visibility, etc. As
for additional traffic parameters, we can create similar count
parameters based on the filed and regulated flight tactical
models (FTFM, RTFM). Additionally we can imagine using
the flight IFPS IDs to cross reference other databases to
formulate additional features that reflect traffic characteristics
such as arrivals/departures aerodromes, traffic volumes, delays,
etc.

D. Modeling

In this example we will predict the occupancy count based
on a subset of weather parameters; overshoots, high, and
very high storm severity. These three parameters were chosen
since these are likely to have the largest impact on air traffic.
Figure 9 shows a time series representation of traffic and the
selected weather features from May 21st through June 13th,
a period with thunderstorm activity in the MUAC airspace.
From the figure we can see some decreases in the occupancy
count corresponding to times with peak values of overshoots,
high, and very high storm severity. The effect of weather can
be better appreciated in Figure 10, it compares the occupancy
count for Tuesday May 29th, 2018, the day with the most
storms in our dataset, with the occupancy of the following
three Tuesdays.

In formulating our models, we treated the occupancy count
as our dependent variable, and the weather parameters as
independent. We also created binary independent variables

Figure 10: Comparison of occupancy count in MUAC on Tuesday May,
29th and the following three Tuesdays. Lower occupancy on the 29th can
be attributed to afternoon thunderstorms in the sector.

based on the day of the week and hour of the day. Our final
input data consisted of 34 features, 3 related to weather, and 31
related to time ( 7 days of the week plus 24 hours of the day).
Next, we split the data into two sets for training and testing,
we chose to train on the data from May 4th - June 5th and test
on the data for June 6th - July 7th. The intention was to have
thunderstorms show up in both sets, from the data we see that
there were two episodes with strong convection; the week of
May 28th, and the days following June 6th, our attempt was
to train the models with data from the first episode of storms
to predict the second. We fit the data using multiple data
science techniques using existing python libraries. From the
data we created four different models based on multiple linear
regression, decision tree regression, neural network, and a long
short-term memory recurrent neural network (LSTM) method-

Figure 9: Time series representation of features occupancy count, overshoots, high and very high for MUAC airspace from May 21st - June 12th.
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ologies. Further processing was performed to normalised the
data using the ”MinMaxScaler” function before fitting the data
into the neural network and LSTM models.

1) Multiple Linear Regression: Model based on ordinary
least squares regression using the python ”statsmodels” library

2) Decision Tree Regression: A decision tree regressor
using the python ”sklearn” library. The decision tree was
created with a max depth parameter of 30.

3) Neural Network: Neural network model using the
”keras” library. Network architecture use was 34 input nodes,
3 hidden layers of sizes 40 ,80, 20, and 1 output node.

4) LSTM Neural Network: LSTM formulation using infor-
mation from the previous 4 time steps. LSTM model was built
using the ”keras” library. The input dimension for model was
174 parameters, made up of (34 independent + 1 dependent
variables) at the 4 previous time steps + 34 independent
variables at current time step.

VI. RESULTS

Figure 11 shows the outputs of the four models for the
time period June 6th through June 12th, 2018, days in which
there was also thunderstorm activity in the network. Table II
shows the root mean square error and R2 correlation co-
efficient for the multiple models over the entire validation
set (June 6th through July 7th). The results show that the
data can be modelled fairly accurately by simply using linear
regression, this is likely due to the highly cyclical behaviour
of aircraft occupancy in the MUAC sector. The neural network
and LSTM model offer slightly better performance, however
whether these models are capable of capturing sensitivity
due to the weather parameters needs to be further analysed.
Additional data containing more episodes of convection would
allow us to further validate our models.

While our models may accurately predict the occupancy
count in a sector, further development is needed to capture

TABLE II: Comparison of model performance for June 6th - July 7th data

Model Type Root Mean Square Error R2

Multiple Linear Regression 25.565 0.978
Decision Tree Regression 24.410 0.980

Neural Network 19.626 0.987
LSTM NN 17.728 0.990

the relationship between storms and traffic. Deviations in
traffic patterns due to aircraft flying around or over convective
weather are likely to exist in the data, however these variations
are lost by aggregating the data into a one dimensional vector.
In future versions we intend to feed our models with multi-
dimensional arrays rather than a one dimensional time series,
the use of arrays will allow us to better capture the spatial
relationships and location specific behaviour between storms
and traffic.

VII. CONCLUSION AND FUTURE WORK

In this paper we set out to demonstrate a methodology
for integrating historical weather and traffic data. We have
also demonstrated a preliminary implementation of multiple
machine learning algorithms to predict the occupancy count in
the MUAC sector given the day of the week, time of day, and
weather parameters. Initial results of a time series representa-
tion of the problem seem promising, however models need to
be refined and tested with additional datasets to validate they
are able to capture the effects of weather. We will also explore
extracting additional features from DDR such as regulations
and delays, allowing us to find correlations between these
parameters and weather.

In the next steps of our research, we will move from the
assumption of having a ”perfect weather forecast” and use ac-
tual storm forecast as inputs to our traffic models. These storm
forecasts will be the output of ongoing parallel work, in which

Figure 11: Comparison of models estimating MUAC occupancy for June 6th - June 12th, 2018
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we integrate data from numerical weather prediction tools and
storm observations to develop machine learning algorithms
for weather prediction. The operational goal of this research
will be to accurately assess the future characteristics of the
network based on weather forecasts. Machine learning has
already started making advances in the area of meteorology to
improve the accuracy of weather forecasts, we aim to leverage
these knowledge gains to improve the ATFM process.
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